Publications by authors named "Tero Kesti"

Early warning systems monitoring the quality of drinking water need to distinguish between normal quality fluctuations and those caused by contaminants. Thus, to decrease the number of false positive events, normal water quality fluctuations, whether periodic or aperiodic, need to be characterized. For this, we used a novel flow-imaging particle counter, a light-scattering particle counter, and electrochemical sensors to monitor the drinking water quality of a pressure zone in a building complex for 109 days.

View Article and Find Full Text PDF

Contamination detection in drinking water is crucial for water utilities in terms of public health; however, current online water quality sensors can be unresponsive to various possible contaminants consisting of particulate and dissolved content or require a constant supply of reagents and sample preparation. We used a two-line test environment connected to a drinking water distribution system with flow-imaging particle counters and conventional sensors to assess their responses to the injection of contaminants into one line, including stormwater, treated wastewater, wastewater, well water, and Escherichia coli, while simultaneously measuring responses to normal water quality fluctuations in the other line. These water quality fluctuations were detected with all of the conventional sensors (except conductivity) and with 3 out of 5 of the size- and shape-derived particle classes of the flow-imaging particle counter.

View Article and Find Full Text PDF

We have studied the influence of three different fullerene derivatives on the charge generation and recombination dynamics of polymer/fullerene bulk heterojunction (BHJ) solar cell blends. Charge generation in APFO3/[70]PCBM and APFO3/[60]PCBM is very similar and somewhat slower than charge generation in APFO3/[70]BTPF. This difference qualitatively matches the trend in free energy change of electron transfer estimated from the LUMO energies of the polymer and fullerene derivatives.

View Article and Find Full Text PDF

Internal dynamics of dansylated poly(propyleneamine) dendrimers (POPAM, G1-G4) in solution and excitation energy transfer from dansyls to eosin in POPAM-eosin complexes have been studied by time-resolved fluorescence spectroscopy and molecular dynamics (MD) simulations. Combining the results from fluorescence anisotropy and the MD simulation studies suggests three time domains for the internal dynamics of the G3 and G4 generations, about 60 ps for motions of the outer-sphere dansyls, 500-1000 ps for restricted motions of back-folded dansyls, and 1500-2600 ps for the overall rotation. For the smaller generations, the contribution from the restricted motions was not entirely evident.

View Article and Find Full Text PDF

By measuring excited state and charge dynamics in blends of an alternating polyfluorene copolymer and fullerene derivative over nine orders in time and two orders in light intensity, we have monitored the light-induced processes from ultrafast charge photogeneration to much slower decay of charges by recombination. We find that at low light intensities relevant to solar cell operation relatively fast (approximately 30 ns) geminate recombination is the dominating charge decay process, while nongeminate recombination has a negligible contribution. The conclusion of our work is that under solar illumination conditions geminate recombination of charges may be directly competing with efficient charge collection in polymer/fullerene solar cells.

View Article and Find Full Text PDF

The second excited singlet (S2) state of porphyrin was efficiently quenched by the attached fullerene C70 moiety in a zinc porphyrin-C70 dyad. The quenching is largely explained by energy transfer to C70, but the possibility of additional reactions involving the S2 state of porphyrin is discussed. Singlet energy transfer was found to be an important decay pathway also for the first excited singlet (S1) state of porphyrin.

View Article and Find Full Text PDF

The photoinduced electron transfer in differently linked zinc porphyrin-fullerene dyads and their free-base porphyrin analogues was studied in polar and nonpolar solvents with femto- to nanosecond absorption and emission spectroscopies. A new intermediate state, different from the locally excited (LE) chromophores and the complete charge-separated (CCS) state, was observed. It was identified as an exciplex.

View Article and Find Full Text PDF