Heart failure (HF) is a disease related to impaired performance of the heart and is a significant cause of mortality and treatment costs in the world. During its progression, HF causes worsening (decompensation) periods which generally require hospital care. In order to reduce the suffering of the patients and the treatment cost, avoiding unnecessary hospital visits is essential, as hospitalization can be prevented by medication.
View Article and Find Full Text PDFNovel means to minimize treatment delays in patients with ST elevation myocardial infarction (STEMI) are needed. Using an accelerometer and gyroscope on the chest yield mechanocardiographic (MCG) data. We investigated whether STEMI causes changes in MCG signals which could help to detect STEMI.
View Article and Find Full Text PDFBackground: In the context of monitoring dogs, usually, accelerometers have been used to measure the dog's movement activity. Here, we study another application of the accelerometers (and gyroscopes)-seismocardiography (SCG) and gyrocardiography (GCG)-to monitor the dog's heart. Together, 3-axis SCG and 3-axis GCG constitute of 6-axis mechanocardiography (MCG), which is inbuilt to most modern smartphones.
View Article and Find Full Text PDFCardiac translational and rotational vibrations induced by left ventricular motions are measurable using joint seismocardiography (SCG) and gyrocardiography (GCG) techniques. Multi-dimensional non-invasive monitoring of the heart reveals relative information of cardiac wall motion. A single inertial measurement unit (IMU) allows capturing cardiac vibrations in sufficient details and enables us to perform patient screening for various heart conditions.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2018
We present a smartphone-only solution for the detection of atrial fibrillation (AFib), which utilizes the built-in accelerometer and gyroscope sensors [inertial measurement unit, (IMU)] in the detection. Depending on the patient's situation, it is possible to use the developed smartphone application either regularly or occasionally for making a measurement of the subject. The smartphone is placed on the chest of the patient who is adviced to lay down and perform a noninvasive recording, while no external sensors are needed.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2017
In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting.
View Article and Find Full Text PDFHeart rate monitoring helps in assessing the functionality and condition of the cardiovascular system. We present a new real-time applicable approach for estimating beat-to-beat time intervals and heart rate in seismocardiograms acquired from a tri-axial microelectromechanical accelerometer. Seismocardiography (SCG) is a non-invasive method for heart monitoring which measures the mechanical activity of the heart.
View Article and Find Full Text PDFThe vibrations produced by the cardiovascular system that are coupled to the precordium can be noninvasively detected using accelerometers. This technique is called seismocardiography. Although clinical applications have been proposed for seismocardiography, the physiology underlying the signal is still not clear.
View Article and Find Full Text PDF