Household, or point-of-use (POU), water treatments are effective alternatives to provide safe drinking water in locations isolated from a water treatment and distribution network. The household slow sand filter (HSSF) is amongst the most effective and promising POU alternatives available today. Since the development of the patented biosand filter in the early 1990s, the HSSF has undergone a number of modifications and adaptations to improve its performance, making it easier to operate and increase users' acceptability.
View Article and Find Full Text PDFThere is increasing evidence showing positive association between changes in oral microbiome and the occurrence of oral squamous cell carcinoma (OSCC). Alcohol- and nicotine-related products can induce microbial changes but are still unknown if these changes are related to cancerous lesion sites. In an attempt to understand how these changes can influence the OSCC development and maintenance, the aim of this study was to investigate the oral microbiome linked with OSCC as well as to identify functional signatures and associate them with healthy or precancerous and cancerous sites.
View Article and Find Full Text PDFHousehold Water Treatment and Safe Storage (HWTS) are recommended to supply the demand for drinking water in communities without conventional water supply systems. However, there is a lack of long-term laboratory studies regarding such technologies. We evaluated the contributions of each step of a multi-barrier system with pretreatment (sedimentation and fabric filtration), filtration in Household Slow Sand Filters (HSSFs) and disinfection (sodium hypochlorite) treating surface water for more than 14 consecutive months.
View Article and Find Full Text PDFThis study evaluated the impact of a 50% reduction of filter media depth in Household Slow Sand Filters (HSSFs) on continuous flow to remove physicochemical and microbiological parameters from river water. Furthermore, simple pre-treatment and disinfection processes were evaluated as additional treatments. Two filter models with different filtration layer depths were evaluated: a traditional one with 50 cm media depth (T-HSSF) and a compact one (C-HSSF) with 25 cm.
View Article and Find Full Text PDFThis study aimed to evaluate the efficiency of four household slow sand filter (HSSF) models for the removal of microorganisms from river water throughout the development of their biological layers (). Two models were designed to be operated continuously (HSSF-CC and HSSF-CT) and two intermittently (HSSF-ID and HSSF-IF). Filters were fed daily with 48 L pre-treated river water (24 h sedimentation followed by filtration through a non-woven synthetic blanket).
View Article and Find Full Text PDFA household slow sand filter (HSSF) is a widely used water treatment technology recognized as one of the most effective and sustainable in reducing waterborne diseases. However, there is a lack of knowledge concerning its behaviour in the presence of cyanobacteria and cyanotoxins. In this context, the study aimed to evaluate HSSF ability to remove Microcystis aeruginosa cells (stain BB005) and microcystin-LR from water, among other parameters, when operated under continuous (C-HSSF) and intermittent (I-HSSF) flows.
View Article and Find Full Text PDF