Protein kinases are key regulators of numerous biological processes and aberrant kinase activity can cause various diseases, particularly cancer. Herein, we report the identification of new series of highly selective kinase inhibitors based on the thieno[3,2-b]pyridine scaffold. The weak interaction of the thieno[3,2-b]pyridine core with the kinase hinge region allows for profoundly different binding modes all of which maintain high kinome-wide selectivity, as illustrated by the isomers MU1464 and MU1668.
View Article and Find Full Text PDFToll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and have described its role primarily in the proinflammatory response and induction of apoptosis. It is up-regulated in some castration-resistant prostate cancers.
View Article and Find Full Text PDFThe transcription factor c-Myb is an oncoprotein promoting cell proliferation and survival when aberrantly activated/expressed, thus contributing to malignant transformation. Overexpression of c-Myb has been found in leukemias, breast, colon and adenoid cystic carcinoma. Recent studies revealed its expression also in osteosarcoma cell lines and suggested its functional importance during bone development.
View Article and Find Full Text PDFAs treatment options for patients with incurable metastatic castration-resistant prostate cancer (mCRPC) are considerably limited, novel effective therapeutic options are needed. Checkpoint kinase 1 (CHK1) is a highly conserved protein kinase implicated in the DNA damage response (DDR) pathway that prevents the accumulation of DNA damage and controls regular genome duplication. CHK1 has been associated with prostate cancer (PCa) induction, progression, and lethality; hence, CHK1 inhibitors SCH900776 (also known as MK-8776) and the more effective SCH900776 analog MU380 may have clinical applications in the therapy of PCa.
View Article and Find Full Text PDFSkp2 is a crucial component of SCF E3 ubiquitin ligase and is often overexpressed in various types of cancer, including prostate cancer (PCa). The epithelial-to-mesenchymal transition (EMT) is involved in PCa progression. The acquisition of a mesenchymal phenotype that results in a cancer stem cell (CSC) phenotype in PCa was described.
View Article and Find Full Text PDFPurpose: The purpose of the study was to determine whether the GDF-15 is present in follicular fluid; to evaluate if there is a relation between follicular and serum levels of GDF-15 and fertility status of study subjects; and to test whether granulosa cells, oocytes, or both produce GDF-15.
Methods: This study used follicular fluid (FF, serum, and oocytes obtained under informed consent from women undergoing oocyte retrieval for in vitro fertilization. It also used ovaries from deceased preterm newborns.
Checkpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer deaths, and effective treatments are urgently needed. Loss-of-function mutations in the DNA damage response kinase ATM are common in lung adenocarcinoma but directly targeting these with drugs remains challenging. Here we report that ATM loss-of-function is synthetic lethal with drugs inhibiting the central growth factor kinases MEK1/2, including the FDA-approved drug trametinib.
View Article and Find Full Text PDFPlasticity of cancer cells, manifested by transitions between epithelial and mesenchymal phenotypes, represents a challenging issue in the treatment of neoplasias. Both epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are implicated in the processes of metastasis formation and acquisition of stem cell-like properties. Mouse double minute (MDM) 2 and MDMX are important players in cancer progression, as they act as regulators of p53, but their function in EMT and metastasis may be contradictory.
View Article and Find Full Text PDFBackground: Tumor heterogeneity and the plasticity of cancer cells present challenges for effective clinical diagnosis and therapy. Such challenges are epitomized by neuroendocrine transdifferentiation (NED) and the emergence of neuroendocrine-like cancer cells in prostate tumors. This phenomenon frequently arises from androgen-depleted prostate adenocarcinoma and is associated with the development of castration-resistant prostate cancer and poor prognosis.
View Article and Find Full Text PDFA substitution of the ammine ligands of cisplatin, cis-[Pt(NH3)2Cl2], for cyclin dependent kinase (CDK) inhibitor bohemine (boh), [2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine], results in a compound, cis-[Pt(boh)2Cl2] (C1), with the unique anticancer profile which may be associated with some features of the damaged DNA and/or its cellular processing (Travnicek Z et al. (2003) J Inorg Biochem94, 307-316; Liskova B (2012) Chem Res Toxicol25, 500-509). A combination of biochemical and molecular biology techniques was used to establish mechanistic differences between cisplatin and C1 with respect to the DNA damage they produce and their interactions with critical DNA-binding proteins, DNA-processing enzymes and glutathione.
View Article and Find Full Text PDFDesign of new antitumor Pt drugs is currently also focused on those new Pt complexes which form on DNA major adducts that can hardly be removed by DNA repair systems. An attempt of this kind has already been done by designing and synthesizing new antitumor azolato-bridged dinuclear Pt(II) complexes, such as [{cis-Pt(NH(3))(2)}(2)(μ-OH)(μ-pyrazolate)](2+) (AMPZ). This new Pt(II) complex exhibits markedly higher toxic effects in some tumor cell lines than conventional mononuclear cisplatin.
View Article and Find Full Text PDFThe new trinuclear tridentate Pt(II) complex [Pt(3)Cl(3)(hptab)](3+) (1; hptab = N,N,N',N',N'',N''-hexakis(2-pyridylmethyl)-1,3,5-tris(aminomethyl)benzene) exhibits promising cytotoxic effects in human and mouse tumor cells including those resistant to conventional cisplatin (Dalton Trans. 2006, 2617; Chem. Eur.
View Article and Find Full Text PDFPlatinum diamine complexes are able to crosslink the guanines of d(GC)(2) dinucleotides within double-stranded DNA. The interstrand crosslink thus formed causes a bend of the double helix toward the minor groove and the helical sense changes locally to left-handed, resulting in a considerable unwinding. The bend and unwinding angles have been shown to depend on the platinum ligands.
View Article and Find Full Text PDFcis-Amminedichlorido(cyclohexylamine)platinum(II) (JM118) is an antitumor Pt(II) analogue of cisplatin exhibiting considerably higher activity than cisplatin in human tumor cells. JM118 is also the major metabolite of the first orally administered Pt(IV) drug satraplatin. In an effort to design improved platinum antitumor agents, it is important to elucidate the biochemical factors that affect the cytotoxic properties of existing platinum drugs.
View Article and Find Full Text PDFThe primary objective was to understand more deeply the molecular mechanism underlying different antitumor effects of dinuclear Pt(II) complexes containing aromatic linkers of different length, {[cis-Pt(NH(3))(2)Cl](2)(4,4'-methylenedianiline)}(2+) (1) and {[cis-Pt(NH(3))(2)Cl](2)(alpha,alpha'-diamino-p-xylene)}(2+) (2). These complexes belong to a new generation of promising polynuclear platinum drugs resistant to decomposition by sulfur nucleophiles which hampers clinical use of bifunctional polynuclear trans Pt(II) complexes hitherto tested. Results obtained with the aid of methods of molecular biophysics and pharmacology reveal differences and new details of DNA modifications by 1 and 2 and recognition of these modifications by cellular components.
View Article and Find Full Text PDFWe studied the thermodynamic properties, conformation, and recognition of DNA duplexes site-specifically modified by monofunctional adducts of Ru(II) complexes of the type [Ru(II)(eta(6)-arene)(Cl)(en)](+), in which arene=para-, meta-, or ortho-terphenyl (complexes 1, 2, and 3, respectively) and en=1,2-diaminoethane. It has been shown (J. Med.
View Article and Find Full Text PDFEarlier studies have described promising antitumor activity of a large-ring chelate complex [PtCl(2)(cis-1,4-DACH)] (DACH=diaminocyclohexane). Encouraging antitumor activity of this analogue of cisplatin prompted us to perform studies focused on the mechanistic basis of pharmacological effects of this complex. Four early steps in the mechanism of biological activity of cisplatin have been delineated: cell entry, reactions with sulfur-containing compounds, platinum-DNA binding along with processing platinated DNA by proteins (enzymes) and DNA repair.
View Article and Find Full Text PDFReported herein is a detailed biochemical and molecular biophysics study of the molecular mechanism of action of antitumor dinuclear Pt(II) complex [{PtCl(DACH)}(2)-mu-Y](4+) [DACH=1,2-diaminocyclohexane, Y=H(2)N(CH(2))(6)NH(2)(CH(2))(2)NH(2)(CH(2))(6)NH(2)] (complex 1). This new, long-chain bifunctional dinuclear Pt(II) complex is resistant to metabolic decomposition by sulfur-containing nucleophiles. The results show that DNA adducts of 1 can largely escape repair and yet inhibit very effectively transcription so that they should persist longer than those of conventional cisplatin.
View Article and Find Full Text PDFThe global modification of mammalian and plasmid DNAs by the novel platinum compounds cis-[PtCl(2)(isopropylamine)(1-methylimidazole)] and trans-[PtCl(2)(isopropylamine)(1-methylimidazole)] and the reactivity of these compounds with reduced glutathione (GSH) were investigated in cell-free media using various biochemical and biophysical methods. Earlier cytotoxicity studies had revealed that the replacement of the NH(3) groups in cisplatin by the azole and isopropylamine ligands lowers the activity of cisplatin in both sensitive and resistant cell lines. The results of the present work show that this replacement does not considerably affect the DNA modifications by this drug, recognition of these modifications by HMGB1 protein, their repair, and reactivity of the platinum complex with GSH.
View Article and Find Full Text PDF