Publications by authors named "Tereza Janska"

Background: Targeted alpha therapy (TAT) is an effective option for cancer treatment. To maximize its efficacy and minimize side effects, carriers must deliver radionuclides to target tissues. Most of the nuclides used in TAT decay via the alpha cascade, producing several radioactive daughter nuclei with sufficient energy to escape from the original carrier.

View Article and Find Full Text PDF

The utilization of nanomaterials in biomedical applications has surged in recent years; yet, the transition from research to practical implementation remains a great challenge. However, a promising area of research has emerged with the integration of nanomaterials with diagnostic and therapeutic radionuclides. In this Review, we elucidate the motivations behind selecting metal oxide- and phosphate-based nanomaterials in conjunction with these radionuclides, while addressing its issues and limitations.

View Article and Find Full Text PDF

Background: Targeted alpha therapy is one of the most powerful therapeutical modalities available in nuclear medicine. It's therapeutic potency is based on the nuclides that emit one or several alpha particles providing strong and highly localized therapeutic effects. However, some of these radionuclides, like e.

View Article and Find Full Text PDF

Nanoparticles of various materials were proposed as carriers of nuclides in targeted alpha particle therapy to at least partially eliminate the nuclear recoil effect causing the unwanted release of radioactive progeny originating in nuclear decay series of so-called in vivo generators. Here, we report on the study of Pb and Bi recoils release from the Ra surface-labelled TiO nanoparticles in the concentration range of 0.01-1 mg/mL using two phase separation methods different in their kinetics in order to test the ability of progeny resorption.

View Article and Find Full Text PDF