Publications by authors named "Teresa V Orenic"

Hox genes are involved in the patterning of animal body parts at multiple levels of regulatory hierarchies. Early expression of Hox genes in different domains along the embryonic anterior-posterior (A/P) axis in insects, vertebrates, and other animals establishes segmental or regional identity. However, Hox gene function is also required later in development for the patterning and morphogenesis of limbs and other organs.

View Article and Find Full Text PDF

A previous genetic analysis of a reporter gene carrying a 375-bp region from a dpp intron (dppMX-lacZ) revealed that the Wingless and Dpp pathways are required to activate dpp expression in posterior spiracle formation. Here we report that within the dppMX region there is an enhancer with binding sites for TCF and Mad that are essential for activating dppMX expression in posterior spiracles. There is also a binding site for Brinker likely employed to repress dppMX expression.

View Article and Find Full Text PDF

Many studies have shown that morphological diversity among homologous animal structures is generated by the homeotic (Hox) genes. However, the mechanisms through which Hox genes specify particular morphological features are not fully understood. We have addressed this issue by investigating how diverse sensory organ patterns are formed among the legs of the Drosophila melanogaster adult.

View Article and Find Full Text PDF

In vertebrates and invertebrates, spatially defined proneural gene expression is an early and essential event in neuronal patterning. In this study, we investigate the mechanisms involved in establishing proneural gene expression in the primordia of a group of small mechanosensory bristles (microchaetae), which on the legs of the Drosophila adult are arranged in a series of longitudinal rows along the leg circumference. In prepupal legs, the proneural gene achaete (ac) is expressed in longitudinal stripes, which comprise the leg microchaete primordia.

View Article and Find Full Text PDF

The sensory organs of the Drosophila adult leg provide a simple model system with which to investigate pattern-forming mechanisms. In the leg, a group of small mechanosensory bristles is organized into a series of longitudinal rows, a pattern that depends on periodic expression of the hairy gene (h) and the proneural genes achaete (ac) and scute (sc). Expression of ac in longitudinal stripes in prepupal leg discs defines the positions of the mechanosensory bristle rows.

View Article and Find Full Text PDF