Maternal cardiovascular diseases, including hypertension and cardiac conditions, are associated with poor fetal outcomes. A range of adrenergic antihypertensive and cardioprotective medications are often prescribed to pregnant women to reduce major maternal complications during pregnancy. Although these treatments are not considered teratogenic, they may have detrimental effects on fetal growth and development, as they cross the fetoplacental barrier, and may contribute to placental vascular dysregulation.
View Article and Find Full Text PDFIncreasing levels of estrogens across gestation are partly responsible for the physiological adaptations of the maternal vasculature to pregnancy. The G protein-coupled estrogen receptor (GPER) mediates acute vasorelaxing effects in the uterine vasculature, which may contribute to the regulation of uteroplacental blood flow. The aim of this study was to investigate whether GPER expression and vasorelaxation may occur following pregnancy.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder that associates with nucleotide sequence variants in genes encoding sarcomere related proteins, and is recognized as the most common heritable cardiac diseases. Clinically, HCM can be extremely variable and this makes the diagnosis difficult until the development of serious or fatal events. Nevertheless, the main hallmark of HCM is represented by left ventricle hypertrophy that can be occasionally associated to cardiac arrhythmias, chest pain, diastolic dysfunction, obstruction of left ventricular outflow tract.
View Article and Find Full Text PDFAcetylsalicylic acid (aspirin) exhibits a broad range of activities, including analgesic, antipyretic, and antiplatelet properties. Recent clinical studies also recommend aspirin prophylaxis in women with a high risk of pre-eclampsia, a major complication of pregnancy characterized by hypertension. We investigated the effect of aspirin on mesenteric resistance arteries and found outdiscovered the molecular mechanism underlying this action.
View Article and Find Full Text PDFVascular changes of tone and biomechanical properties induced by ageing increase the risk for cardiovascular diseases. Caloric restriction (CR) has been shown to protect against cardiovascular diseases and improve endothelial dysfunction in cerebral resistance arteries. We hypothesise that CR will enhance vascular tone and structural properties of cerebral resistance arteries and exert comparable beneficial effects on the systemic vasculature of aged rat model.
View Article and Find Full Text PDFNitric oxide (NO) is essential in the control of fetoplacental vascular tone, maintaining a high flow-low resistance circulation that favors oxygen and nutrient delivery to the fetus. Reduced fetoplacental blood flow is associated with pregnancy complications and is one of the major causes of fetal growth restriction (FGR). The reduction of dietary nitrate to nitrite and subsequently NO may provide an alternative source of NO in vivo.
View Article and Find Full Text PDFRecent evidence suggests that the reason Extra Virgin Olive Oil (EVOO) lowers blood pressure and reduces the risk of developing hypertension is partly due to minor components of EVOO, such as phenols. However, little is still known about the mechanism(s) through which EVOO phenols mediate anti-hypertensive effects. The aim of the present study was to investigate the mechanisms of action of EVOO phenols on mesenteric resistance arteries.
View Article and Find Full Text PDFHypertension during pregnancy is a leading cause of maternal and fetal morbidity and mortality worldwide, increasing the risk of complications including preeclampsia, intracerebral hemorrhage and fetal growth restriction. Increased oxidative stress is known to contribute to poor vascular function; however, trials of antioxidant supplementation have raised concerns about fetal outcomes, including risk of low birthweight. Grape seed extract polyphenols (GSEP) have been suggested to promote cardiovascular protection, at least in part through antioxidant actions.
View Article and Find Full Text PDFKey Points: Maternal hypertension is associated with increased rates of pregnancy pathologies, including fetal growth restriction, due at least in part to reductions in nitric oxide (NO) bioavailability and associated vascular dysfunction. Dietary nitrate supplementation, from beetroot juice (BRJ), has been shown to increase NO bioavailability and improve cardiovascular function in both preclinical and clinical studies. This study is the first to investigate effects of dietary nitrate supplementation in a pregnant animal model.
View Article and Find Full Text PDFObjective: The objective of this study was to understand the effect of acetylsalicylic acid (aspirin) on resistance arteries from mesentery and uterus. During pregnancy, the uterine vasculature undergoes consistent growth to provide sufficient uteroplacental blood flow, a process whose failure is associated with pregnancy complications characterized by high uterine vascular resistance.
Methods: Uterine arcuate (UA) and mesenteric arteries (MA; diameter <300 µm) isolated from non-gravid, mid-gravid (day 14), and late-gravid rats (day 20) were exposed to aspirin (10 to 10 M).
Adequate perfusion of the placental vasculature is essential to meet the metabolic demands of fetal growth and development. Lacking neural control, local tissue metabolites, circulating and physical factors contribute significantly to blood flow regulation. Nitric oxide (NO) is a key regulator of fetoplacental vascular tone.
View Article and Find Full Text PDFFetal growth restriction (FGR) presents with an increased risk of stillbirth and childhood and adulthood morbidity. Melatonin, a neurohormone and antioxidant, has been suggested as having therapeutic benefit in FGR. We tested the hypothesis that melatonin would increase fetal growth in two mouse models of FGR which together represent a spectrum of the placental phenotypes in this complication: namely the endothelial nitric oxide synthase knockout mouse (eNOS) which presents with abnormal uteroplacental blood flow, and the placental specific knockout mouse (P0) which demonstrates aberrant placental morphology akin to human FGR.
View Article and Find Full Text PDFChronic hypertension in pregnancy is associated with significant adverse pregnancy outcomes, increasing the risk of pre-eclampsia, fetal growth restriction and preterm birth. Dietary nitrate, abundant in green leafy vegetables and beetroot, is reduced in vivo to nitrite and subsequently nitric oxide, and has been demonstrated to lower blood pressure, improve vascular compliance and enhance blood flow in non-pregnant humans and animals. The primary aims of this study were to determine the acceptability and efficacy of dietary nitrate supplementation, in the form of beetroot juice, to lower blood pressure in hypertensive pregnant women.
View Article and Find Full Text PDFFetal growth restriction (FGR) affects around 5% of pregnancies and is associated with significant short- and long-term adverse outcomes. A number of factors can increase the risk of FGR, one of which is poor maternal diet. In terms of pathology, both clinically and in many experimental models of FGR, impaired uteroplacental vascular function is implicated, leading to a reduction in the delivery of oxygen and nutrients to the developing fetus.
View Article and Find Full Text PDFBackground: The regulation of vascular tone in the uterine circulation is a key determinant of appropriate uteroplacental blood perfusion and successful pregnancy outcome. Estrogens, which increase in the maternal circulation throughout pregnancy, can exert acute vasodilatory actions. Recently a third estrogen receptor named GPER (G protein-coupled estrogen receptor) was identified and, although several studies have shown vasodilatory effects in several vascular beds, nothing is known about its role in the uterine vasculature.
View Article and Find Full Text PDF