This study introduces a novel plasmonic nanocomposite platform, where gold nanoparticles (AuNPs) are synthesized in situ within a polydimethylsiloxane (PDMS) film. The innovative fabrication process leverages ethyl acetate swelling to achieve a uniform distribution of AuNPs, eliminating the need for additional reagents. The resulting nanocomposite film exhibits exceptional photothermal conversion capabilities, efficiently converting absorbed light into heat and rapidly reaching high temperatures.
View Article and Find Full Text PDFThis work aims at understanding the attachment mechanisms and stability of proteins on a chromatography medium to develop more efficient functionalization methodologies, which can be exploited in affinity chromatography. In particular, the study was focused on the understanding of the attachment mechanisms of bovine serum albumin (BSA), used as a ligand model, and protein G on novel amine-modified alumina monoliths as a stationary phase. Protein G was used to develop a column for antibody purification.
View Article and Find Full Text PDFα-tocopherol (α-T) has the highest biological activity with respect to the other components of vitamin E; however, conventional formulations of tocopherol often fail to provide satisfactory bioavailability due to its hydrophobic characteristics. In this work, α-tocopherol-loaded nanoparticles based on chitosan were produced by membrane emulsification (ME). A new derivative was obtained by the cross-linking reaction between α-T and chitosan (CH) to preserve its biological activity.
View Article and Find Full Text PDFIn this work, bio-based membranes prepared using a crosslinked β-glucans-chitosan dispersed in the chitosan matrix useful in promoting wound healing were studied for the first-time. Wound healing is a process that includes sequential steps designed to restore the structure and function of damaged cells and tissue. To minimize damage and the risk of infection during the healing process and to promote restoration of the integrity of damaged tissue, the wound should be dressed.
View Article and Find Full Text PDFThe aim of this work is the design, preparation and characterization of membranes based on cyclosporine A (CsA) and chitosan carboxylate (CC) to be used as an implantable subcutaneous medical device for a prolonged therapeutic effect in the treatment of breast cancer. The choice to use CsA is due to literature data that have demonstrated its possible antitumor activity on different types of neoplastic cells. To this end, CsA was bound to CC through an amidation reaction to obtain a prodrug to be dispersed in a chitosan-based polymeric membrane.
View Article and Find Full Text PDFNatural products and herbal therapies represent a thriving field of research, but methods for the production of plant-derived compounds with a significative biological activity by synthetic methods are required. Conventional commercial production by chemical synthesis or solvent extraction is not yet sustainable and economical because toxic solvents are used, the process involves many steps, and there is generally a low amount of the product produced, which is often mixed with other or similar by-products. For this reason, alternative, sustainable, greener, and more efficient processes are required.
View Article and Find Full Text PDFThis study presents an efficient and scalable process for removing the heat-stable salts (HSS) ions from amine solution while recovering methyl diethanolamine (MDEA) solution for its reuse in gas sweetening plants. The presence of HSS in the amine solution causes the loss of solvent capacity, foaming, fouling, and corrosion in gas sweetening units so their removal is crucial for a more well-performing process. Furthermore, the recovery of the amine solution can make the sweetening step a more sustainable process.
View Article and Find Full Text PDFPlastic pollution of the aquatic environment is a major concern considering the disastrous impact on the environment and on human beings. The significant and continuous increase in the production of plastics causes an enormous amount of plastic waste on the land entering the aquatic environment. Furthermore, wastewater treatment plants (WWTPs) are reported as the main source of microplastic and nanoplastic in the effluents, since they are not properly designed for this purpose.
View Article and Find Full Text PDFSolid-gas biocatalysis was performed in a specially designed continuous biocatalytic membrane reactor (BMR). In this work, lipase from (LCR) and ethyl acetate in vapor phase were selected as model enzyme and substrate, respectively, to produce acetic acid and ethanol. LCR was immobilized on functionalized PVDF membranes by using two different kinds of chemical bond: electrostatic and covalent.
View Article and Find Full Text PDFWe demonstrate the label-free and selective detection of interleukin-6 (IL-6), a key cell-signaling molecule in biology and medicine, by integrating an OECT with an immuno-affinity regenerated cellulose membrane. The objective of the membrane is to increase the local concentration of IL-6 at the sensing electrode and, thereby, enhance the device response for concentrations falling within the physiological concentration range of cytokines. The OECT gate electrode is functionalized with an oligo(ethylene glycol)-terminated self-assembled alkanethiolate monolayer (SAM) for both the immobilization of anti IL-6 antibodies and the inhibition of non-specific biomolecule binding.
View Article and Find Full Text PDFThe chemical binding of photocatalytic materials, such as TiO₂ and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO₂ nanoparticles onto polyvinylidene difluoride (PVDF) porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions.
View Article and Find Full Text PDFMembranes are gaining increasing interest in solid-phase analytical assay and biosensors applications, in particular as functional surface for bioreceptors immobilization and stabilization as well as for the concentration of target molecules in microsystems. In this work, regenerated cellulose immuno-affinity membranes were developed and they were used for the selective capture of interleukin-6 (IL-6) as targeted antigen. Protein G was covalently linked on the membrane surface and it was successfully used for the oriented site-specific antibody immobilization.
View Article and Find Full Text PDFBiophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2016
Biomolecules immobilization is a key factor for many biotechnological applications. For this purpose, the covalent immobilization of bovine serum albumin (BSA), lipase from Candida rugosa and protein G on differently functionalized regenerated cellulose membranes was investigated. Dynamic light scattering and electrophoresis measurements carried out on biomolecules in solution indicated the presence of monomers, dimers and trimers for both BSA and protein G, while large aggregates were observed for lipase.
View Article and Find Full Text PDFPd-loaded hierarchical FAU (Pd-FAU) membranes, containing an intrinsic secondary non-zeolitic (meso)porosity, were prepared and tested in the catalytic transfer hydrogenation of acetophenone (AP) to produce phenylethanol (PE), an industrially relevant product. The best operating conditions were preliminarily identified by testing different solvents and organic hydrogen donors in a batch hydrogenation process where micron-sized FAU seeds were employed as catalyst support. Water as solvent and formic acid as hydrogen source resulted to be the best choice in terms of conversion for the catalytic hydrogenation of AP, providing the basis for the design of a green and sustainable process.
View Article and Find Full Text PDFThe polyethylenimine (PEI) as complexing agent was used to study the complexation-ultrafiltration (CP-UF) process in the selective removal of Cu(II) from Ni(II) contained in aqueous media. Preliminary tests showed that optimal chemical conditions for Cu(II) and Ni(II) complexation by the PEI polymer were pH>6.0 and 8.
View Article and Find Full Text PDF