Publications by authors named "Teresa M Wilson"

Low-frequency hearing is critically important for speech and music perception, but no mechanical measurements have previously been available from inner ears with intact low-frequency parts. These regions of the cochlea may function in ways different from the extensively studied high-frequency regions, where the sensory outer hair cells produce force that greatly increases the sound-evoked vibrations of the basilar membrane. We used laser interferometry in vitro and optical coherence tomography in vivo to study the low-frequency part of the guinea pig cochlea, and found that sound stimulation caused motion of a minimal portion of the basilar membrane.

View Article and Find Full Text PDF

Intracochlear electric fields arising out of sound-induced receptor currents, silent currents, or electrical current injected into the cochlea induce transmembrane potential along the outer hair cell (OHC) but its distribution along the cells is unknown. In this study, we investigated the distribution of OHC transmembrane potential induced along the cell perimeter and its sensitivity to the direction of the extracellular electric field (EEF) on isolated OHCs at a low frequency using the fast voltage-sensitive dye ANNINE-6plus. We calibrated the potentiometric sensitivity of the dye by applying known voltage steps to cells by simultaneous whole-cell voltage clamp.

View Article and Find Full Text PDF

Background: The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis.

View Article and Find Full Text PDF

The mismatch repair pathway is responsible for maintaining genomic stability by correcting base-base mismatches and insertion/deletion loops that arise mainly via replication errors. Additionally, the mismatch repair pathway performs a central role in the cellular response to both alkylation and reactive oxygen species induced DNA damage. An important step in mismatch processing is the recruitment of hEXO1, a 5' to 3' exonuclease, by hMSH2-hMSH6 to remove the nascent DNA strand.

View Article and Find Full Text PDF

The MutY homolog (MYH) can excise adenines misincorporated opposite to guanines or 7,8-dihydro-8-oxo-guanines (8-oxoG) during DNA replication; thereby preventing G:C to T:A transversions. Germline mutations in the human MYH gene are associated with recessive inheritance of colorectal adenomatous polyposis (MAP). Here, we characterize one newly identified MAP-associated MYH missense mutation (R231L) that lies adjacent to the putative hMSH6 binding domain.

View Article and Find Full Text PDF

Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate.

View Article and Find Full Text PDF

Understanding the molecular and cellular functions of RecQ helicases has attracted considerable interest since several human diseases characterized by premature aging and/or cancer have been genetically linked to mutations in genes of the RecQ family. Although a human disease has not yet been genetically linked to a mutation in RECQ1, the prominent roles of RecQ helicases in the maintenance of genome stability suggest that RECQ1 helicase is likely to be important in vivo. To acquire a better understanding of RECQ1 cellular and molecular functions, we have investigated its protein interactions.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2-MSH6 mismatch repair heterodimer and DNA polymerase (pol) eta, as mutations of A:T are decreased in mice and humans lacking these proteins.

View Article and Find Full Text PDF

The base excision repair DNA glycosylase MutY homolog (MYH) is responsible for removing adenines misincorporated into DNA opposite guanine or 7,8-dihydro-8-oxo-guanine (8-oxoG), thereby preventing G:C to T:A mutations. Biallelic germline mutations in the human MYH gene predispose individuals to multiple colorectal adenomas and carcinoma. We have recently demonstrated that hMYH interacts with the mismatch repair protein hMSH6, and that the hMSH2/hMSH6 (hMutSalpha) heterodimer stimulates hMYH activity.

View Article and Find Full Text PDF

Exonuclease 1 (EXO-1), a member of the RAD2 family of nucleases, has recently been proposed to function in the genetic pathways of DNA recombination, repair, and replication which are important for genome integrity. Although the role of EXO-1 is not well understood, its 5' to 3'-exonuclease and flap endonuclease activities may cleave intermediates that arise during DNA metabolism. In this study, we provide evidence that the Werner syndrome protein (WRN) physically interacts with human EXO-1 and dramatically stimulates both the exonucleolytic and endonucleolytic incision functions of EXO-1.

View Article and Find Full Text PDF

Adenines mismatched with guanines or 7,8-dihydro-8-oxo-deoxyguanines that arise through DNA replication errors can be repaired by either base excision repair or mismatch repair. The human MutY homolog (hMYH), a DNA glycosylase, removes adenines from these mismatches. Human MutS homologs, hMSH2/hMSH6 (hMutSalpha), bind to the mismatches and initiate the repair on the daughter DNA strands.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionf932nqrlc0n3u36fgmj8rj1ctntgdg9q): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once