Publications by authors named "Teresa M Stringfield"

TGF-beta has been postulated to play an important role in the development of pancreatic cancers. More than 50% of human pancreatic cancers bear mutations of Sma- and Mad-related protein (Smad) 4, a critical protein required for TGF-beta signaling. To evaluate the in vivo function of TGF-beta in the development of pancreatic cancers, we generated a transgenic mouse model with pancreas-specific expression of Smad7, a specific inhibitor of TGF-beta signaling.

View Article and Find Full Text PDF

RTP801 is a newly discovered stress-response gene that is induced by hypoxia and other cell stress signals. Arsenic is a heavy metal that is linked to carcinogenesis in humans. Here, we investigated the mechanism by which arsenic induces RTP801 transcription.

View Article and Find Full Text PDF

Transforming growth factor-beta1 (TGF-beta1), an immunosuppressive cytokine, inhibits cytotoxic T cell (CTL) immune responses. In contrast, 4-1BB (CD137), a costimulatory molecule in the tumor necrosis factor (TNF) receptor family, amplifies CTL-mediated antitumor immune responses. We investigated whether TGF-beta1 responses could be reversed by 4-1BB costimulation during in vitro differentiation of naive CD8+ T cells into effector CTL cells.

View Article and Find Full Text PDF

Activation by transforming growth factor-beta (TGF-beta)/activin receptors leads to phosphorylation of Smad2 (Sma- and Mad-related protein 2) and Smad3, which function as transcription factors to regulate gene expression. Using the MH2 domain (Mad homologue domain of Smad proteins 2) of Smad3 in a yeast two-hybrid screening, we isolated a novel splice variant of CAATT-binding factor subunit C (CBF-C), designated CBF-Cb, that associated with Smad3. CBF-C is one of the subunits that form a heterotrimeric CBF complex capable of binding and activating the CAATT motif found in the promoters of many eukaryotic genes.

View Article and Find Full Text PDF