Recent research has shown that microplastics are widespread in the atmosphere. However, we know little about their ability to nucleate ice and their impact on ice formation in clouds. Ice nucleation by microplastics could also limit their long-range transport and global distribution.
View Article and Find Full Text PDFThe accumulation of micro/nanoplastics (MNPs) in ecosystems poses tremendous environmental risks for terrestrial and aquatic organisms. Designing rapid, field-deployable, and sensitive devices for assessing the potential risks of MNPs pollution is critical. However, current techniques for MNPs detection have limited effectiveness.
View Article and Find Full Text PDFMicroplastic particles in the atmosphere are regularly detected in urban areas as well as in very remote locations. Yet the sources, chemical transformation, transport, and abundance of airborne microplastics still remain largely unexplained. Therefore, their impact on health, weather and climate related processes lacks comprehensive understanding.
View Article and Find Full Text PDFInterferometric scattering microscopy (iSCAT) has rapidly developed as a quantitative tool for the label-free detection of single macromolecules and nanoparticles. In practice, this measurement records the interferometric scattering signal of individual nanoparticles in solution as they land and stick on a coverslip, exhibiting an intensity that varies linearly with particle volume and an adsorption rate that reflects the solution-phase transport kinetics of the system. Together, such measurements provide a multidimensional gauge of the particle size and concentration in solution over time.
View Article and Find Full Text PDFBacteria from the complex (comprised of at least 15 recognized species and more than 60 different pathovars of ) have been cultured from clouds, rain, snow, streams, rivers, and lakes. Some strains of express an ice nucleation protein (hereafter referred to as ice+) that catalyzes the heterogeneous freezing of water. Though has been sampled intensively from freshwater sources in the U.
View Article and Find Full Text PDFThe properties of biogenic aerosol strongly depend on the particle's proteinaceous compounds. Proteins from primary biological aerosol particles (PBAPs) can cause allergic reactions in the human respiratory system or act as ice and condensation nuclei in clouds. Consequently, these particles have high impact on human health and climate.
View Article and Find Full Text PDF