Publications by authors named "Teresa M Barnes"

Solar energy is the fastest-growing source of electricity generation globally. As deployment increases, photovoltaic (PV) panels need to be produced sustainably. Therefore, the resource utilization rate and the rate at which those resources become available in the environment must be in equilibrium while maintaining the well-being of people and nature.

View Article and Find Full Text PDF

Among the many ambitious decarbonization goals globally, the US intends grid decarbonization by 2035, requiring 1 TW of installed photovoltaics (PV), up from ~110 GW in 2021. This unprecedented global scale-up will stress existing PV supply chains with increased material and energy demands. By 2050, 1.

View Article and Find Full Text PDF

Controlled delamination of thin-film photovoltaics (PV) post-growth can reveal interfaces that are critical to device performance yet are poorly understood because of their inaccessibility within the device stack. In this work, we demonstrate a technique to lift off thin-film solar cells from their glass substrates in a clean, reproducible manner by first laminating a polymeric backsheet to the device and then thermally shocking the system at low temperatures ( T ≤ -30 °C). To enable clean delamination of diverse thin-film architectures, a theoretical framework is developed and key process control parameters are identified.

View Article and Find Full Text PDF

Efficient p-type doping in CdTe has remained a critical challenge for decades, limiting the performance of CdTe-based semiconductor devices. Arsenic is a promising p-type dopant; however, reproducible doping with high concentration is difficult and carrier lifetime is low. We systematically studied defect structures in As-doped CdTe using high-purity single crystal wafers to investigate the mechanisms that limit p-type doping.

View Article and Find Full Text PDF

In this study we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO/emitter interface. An unexpectedly high concentration of chlorine at this interface, ∼20%, was determined from a calculation that assumed a uniform chlorine distribution.

View Article and Find Full Text PDF

In this report, we investigate the electrical and optical properties of thin conducting films of SWNTs after treatment with small molecule and polymeric amines. Among those tested, we find hydrazine to be the most effective n-type dopant. We use absorbance, Raman, X-ray photoelectron, and nuclear magnetic resonance spectroscopies on thin conducting films and opaque buckypapers treated with hydrazine to study fundamental properties and spectroscopic signatures of n-type SWNTs and compare them to SWNTs treated with nitric acid, a well-characterized p-type dopant.

View Article and Find Full Text PDF

Disordered nanohole arrays were formed in silver films by colloidal lithography techniques and characterized for their surface-plasmon activity. Careful control of the reagent concentration, deposition solution ionic strength, and assembly time allowed generation of a wide variety of nanohole densities. The fractional coverage of the nanospheres across the surface was varied from 0.

View Article and Find Full Text PDF

We present a comprehensive study of the effects of doping and temperature on the conductivity of single-walled carbon nanotube (SWNT) networks. We investigated nearly type-pure networks as well as networks comprising precisely tuned mixtures of metallic and semiconducting tubes. Networks were studied in their as-produced state and after treatments with nitric acid, thionyl chloride, and hydrazine to explore the effects of both intentional and adventitious doping.

View Article and Find Full Text PDF

We present a comprehensive study of the optical and electrical properties of transparent conductive films made from precisely tuned ratios of metallic and semiconducting single-wall carbon nanotubes. The conductivity and transparency of the SWNT films are controlled by an interplay between localized and delocalized carriers, as determined by the SWNT electronic structure, tube-tube junctions, and intentional and unintentional redox dopants. The results suggest that the main resistance in the SWNT thin films is the resistance associated with tube-tube junctions.

View Article and Find Full Text PDF