Spiking neural networks (SNNs) aim to replicate energy efficiency, learning speed and temporal processing of biological brains. However, accuracy and learning speed of such networks is still behind reinforcement learning (RL) models based on traditional neural models. This work combines a pre-trained binary convolutional neural network with an SNN trained online through reward-modulated STDP in order to leverage advantages of both models.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
June 2022
In this article, we argue that the unsatisfactory out-of-distribution (OOD) detection performance of neural networks is mainly due to the SoftMax loss anisotropy and propensity to produce low entropy probability distributions in disagreement with the principle of maximum entropy. On the one hand, current OOD detection approaches usually do not directly fix the SoftMax loss drawbacks, but rather build techniques to circumvent it. Unfortunately, those methods usually produce undesired side effects (e.
View Article and Find Full Text PDFThe ability of artificial neural networks (ANNs) to adapt to input data and perform generalizations is intimately connected to the use of nonlinear activation and propagation functions. Quantum versions of ANN have been proposed to take advantage of the possible supremacy of quantum over classical computing. To date, all proposals faced the difficulty of implementing nonlinear activation functions since quantum operators are linear.
View Article and Find Full Text PDFIn this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons.
View Article and Find Full Text PDFArtificial neural networks (ANNs) are widely used in applications with complex decision boundaries. A large number of activation functions have been proposed in the literature to achieve better representations of the observed data. However, only a few works employ Tsallis statistics, which has successfully been applied to various other fields.
View Article and Find Full Text PDFBackground: The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using "classic" clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context.
View Article and Find Full Text PDFThis paper introduces an approach called Clustering and Co-evolution to Construct Neural Network Ensembles (CONE). This approach creates neural network ensembles in an innovative way, by explicitly partitioning the input space through a clustering method. The clustering method allows a reduction in the number of nodes of the neural networks that compose the ensemble, thus reducing the execution time of the learning process.
View Article and Find Full Text PDFIEEE Trans Neural Netw
November 2006
This paper introduces a methodology for neural network global optimization. The aim is the simultaneous optimization of multilayer perceptron (MLP) network weights and architectures, in order to generate topologies with few connections and high classification performance for any data sets. The approach combines the advantages of simulated annealing, tabu search and the backpropagation training algorithm in order to generate an automatic process for producing networks with high classification performance and low complexity.
View Article and Find Full Text PDFIEEE Trans Neural Netw
July 2005
In this letter, the computational power of a class of random access memory (RAM)-based neural networks, called general single-layer sequential weightless neural networks (GSSWNNs), is analyzed. The theoretical results presented, besides helping the understanding of the temporal behavior of these networks, could also provide useful insights for the developing of new learning algorithms.
View Article and Find Full Text PDFThis work examines the use of Hybrid Intelligent Systems in the pattern recognition system of an artificial nose. The connectionist approaches Multi-Layer Perceptron and Time Delay Neural Networks, and the hybrid approaches Feature-Weighted Detector and Evolving Neural Fuzzy Networks were investigated. A Wavelet Filter is evaluated as a preprocessing method for odor signals.
View Article and Find Full Text PDFInt J Neural Syst
April 2003
Neuronal groups projecting widely in the brain are being experimentally associated to attention and mood changes. Those groups are known to exert a modulatory effect over other larger groups. On the other hand, some people think of the brain functions as being performed by specialized modular systems.
View Article and Find Full Text PDFThis paper presents an approach of using Simulated Annealing and Tabu Search for the simultaneous optimization of neural network architectures and weights. The problem considered is the odor recognition in an artificial nose. Both methods have produced networks with high classification performance and low complexity.
View Article and Find Full Text PDF