Publications by authors named "Teresa Leavens"

In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats.

View Article and Find Full Text PDF

As a result of its presence in water as a volatile disinfection byproduct, bromodichloromethane (BDCM), which is mutagenic, poses a potential health risk from exposure via oral, dermal and inhalation routes. We developed a refined human physiologically based pharmacokinetic (PBPK) model for BDCM (including new chemical-specific human parameters) to evaluate the impact of BDCM exposure during showering and bathing on important measures of internal dose compared with oral exposure. The refined model adequately predicted data from the published literature for oral, dermal and bathing/showering exposures.

View Article and Find Full Text PDF

Objective: To determine whether pharmacokinetics and milk elimination of flunixin and 5-hydroxy flunixin differed between healthy and mastitic cows.

Design: Prospective controlled clinical trial.

Animals: 20 lactating Holstein cows.

View Article and Find Full Text PDF

Frequent violation of flunixin residues in tissues from cattle has been attributed to non-compliance with the USFDA-approved route of administration and withdrawal time. However, the effect of administration route and physiological differences among animals on tissue depletion has not been determined. The objective of this work was to develop a physiologically based pharmacokinetic (PBPK) model to predict plasma, liver and milk concentrations of flunixin in cattle following intravenous (i.

View Article and Find Full Text PDF

Objective: To determine the tissue depletion profile of tulathromycin and determine an appropriate slaughter withdrawal interval in meat goats after multiple SC injections of the drug.

Animals: 16 healthy Boer goats.

Procedures: All goats were administered tulathromycin (2.

View Article and Find Full Text PDF

Nanomaterials increasingly are playing a role in society for uses ranging from biomedicine to microelectronics; however, pharmacokinetic studies, which will be necessary for human health risk assessments, are limited. Currently the most widely used nanoparticle in consumer products is silver (Ag). The objective of the present study was to quantify the local biodistribution of two types of Ag nanoparticles, Ag-citrate and Ag-silica, in the isolated perfused porcine skin flap (IPPSF).

View Article and Find Full Text PDF

Toxicology and careers in toxicology, as well as many other scientific disciplines, are undergoing rapid and dramatic changes as new discoveries, technologies, and hazards advance at a blinding rate. There are new and ever increasing demands on toxicologists to keep pace with expanding global economies, highly fluid policy debates, and increasingly complex global threats to public health. These demands must be met with new paradigms for multidisciplinary, technologically complex, and collaborative approaches that require advanced and continuing education in toxicology and associated disciplines.

View Article and Find Full Text PDF

Unlabelled: The majority of studies on the effect of nanomaterials on biological function involves either isolated in vitro cell systems or are concerned with in vivo effects after inhalational or dermal exposure. The current work reports on an intriguing observation of the vascular effects seen in an ex vivo perfused tissue preparation, the isolated perfused porcine skin flap (IPPSF), in studies conducted to assess nanomaterial biodistribution. Compared with a relatively large dataset involving organic chemical infusions (n = 53), infusion of six different nanoparticles of diverse sizes and composition (silica or dextran coated Fe(2)O(3), silica or citrate coated silver, PEG or carboxylated quantum dots [QD]) resulted in statistically significant post-infusion flap weight gain and an increase in arterial perfusion pressure (especially with QD-PEG).

View Article and Find Full Text PDF

Tulathromycin is a triamilide antibiotic that maintains therapeutic concentrations for an extended period of time. The drug is approved for the treatment of respiratory disease in cattle and swine and is occasionally used in goats. To investigate the pharmacokinetics of tulathromycin in meat goats, 10 healthy Boer goats were administered a single 2.

View Article and Find Full Text PDF

There are a number of cancer and toxicity studies that have been carried out to assess hazard from methyl tertiary-butyl ether (MTBE) exposure via inhalation and oral administration. MTBE has been detected in surface as well as ground water supplies which emphasized the need to assess the risk from exposure via drinking water contamination. This model can now be used to evaluate route-to-route extrapolation issues concerning MTBE exposures but also as a means of comparing potential dose metrics that may provide insight to differences in biological responses observed in rats following different routes of MTBE exposure.

View Article and Find Full Text PDF

Nanomaterials are increasingly playing a role in society for uses ranging from biomedicine to microelectronics, however pharmacokinetic studies, which will be necessary for human health risk assessments, are limited. Tissue distribution, one component of pharmacokinetics, can be assessed by quantifying arterial extraction of materials in an isolated perfused porcine skin flap (IPPSF). The objective of this study was to assess the IPPSF as a model system to quantitate the distribution of fullerene nanoparticles (nC(60)) from the vascular space into tissues.

View Article and Find Full Text PDF

Aerosol cloud formation may occur when certain tungsten munitions strike hard targets, placing military personnel at increased risk of exposure. Although the pharmacokinetics of various forms of tungsten have been studied in animals following intravenous and oral administration, tungsten disposition following inhalation remains incompletely characterized. The objective of this study was to evaluate the pharmacokinetics of inhaled tungstate (WO(4)) in rats.

View Article and Find Full Text PDF

Olfactory transport of represents an important mechanism for direct delivery of certain metals to the central nervous system (CNS). The objective of this study was to determine whether inhaled tungsten (W) undergoes olfactory uptake and transport to the rat brain. Male, 16-week-old, Sprague-Dawley rats underwent a single, 90-min, nose-only exposure to a Na(2)(188)WO(4) aerosol (256 mg W/m(3)).

View Article and Find Full Text PDF

Current physiologically based pharmacokinetic (PBPK) models for the fuel additive methyl tertiary butyl ether (MTBE) and its metabolite tertiary butyl alcohol (TBA) have not included a mechanism for chemical binding to the male rat-specific protein alpha2u-globulin, which has been postulated to be responsible for renal effects in male rats observed in toxicity and carcinogenicity studies with MTBE. The objective of this work was to expand the previously published models for MTBE to include binding to alpha2u-globulin in the kidney of male rats. In the model, metabolism of MTBE was assumed to occur only in the liver via two saturable pathways.

View Article and Find Full Text PDF

A physiologically based pharmacokinetic model with partition coefficients estimated from quantum dot (QD) 705 biodistribution was compared with the biodistribution of other QDs in mice and rats to determine the model's predictive ability across QD types, species, and exposure routes. The model predicted the experimentally observed persistence of QDs in tissues but not early time profiles or different QD biodistribution. Therefore, more complex models will be needed to better predict QD biodistribution in vivo.

View Article and Find Full Text PDF

Exposure to bromodichloromethane (BDCM), one of the most prevalent disinfection byproducts in drinking water, can occur via ingestion of water and by dermal absorption and inhalation during activities such as bathing and showering. The objectives of this research were to assess BDCM pharmacokinetics in human volunteers exposed percutaneously and orally to (13)C-BDCM and to evaluate factors that could affect disposition of BDCM. Among study subjects, CYP2E1 activity varied fourfold; 20% had the glutathione S-transferase theta 1-1 homozygous null genotype; and body fat ranged from 7 to 22%.

View Article and Find Full Text PDF

Increased brain manganese (Mn) following inhalation can result from direct transport via olfactory neurons and blood delivery. Human health risk assessments for Mn should consider the relative importance of these pathways. The objective of this study was to develop a pharmacokinetic model describing the olfactory transport and blood delivery of Mn in rats following acute MnCl(2) or MnHPO(4) inhalation.

View Article and Find Full Text PDF

Minute ventilation and tidal volume increase in humans during pregnancy. Little data exists, however, on the respiration in pregnant rats, despite their widespread use as an animal model. Since respiration will affect the pharmacokinetics of volatile compounds and ultimately the dose to the fetus, we conducted a study to evaluate respiration in rats during pregnancy.

View Article and Find Full Text PDF

Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation kinetics, 14 volunteers were exposed to 51.3 microg/ml MTBE dermally in tap water for 1 h, drank 2.

View Article and Find Full Text PDF

Introduction: In order to investigate the pharmacokinetics of water-borne chemicals while eliminating exposures by other routes, a dermal exposure system was developed to expose the hand and forearm of human subjects.

Methods: The goal was, primarily, to study the dermal pharmacokinetics of methyl tertiary butyl ether (MTBE), a water contaminant, and, secondarily, the ambient disinfection byproducts (DBPs). MTBE is used as a fuel oxygenate and DBPs result from chlorination of drinking water.

View Article and Find Full Text PDF

Although the insecticide dichlorodiphenyltrichloroethane (DDT) was banned in the US in 1972, DDT and its major metabolite 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) are still persistent in the environment. DDE at high doses is antiandrogenic in fetal and adult rats and, therefore, is of concern in humans exposed environmentally. The objective of this work was to determine the dose-response relationship between DDE and its antiandrogenic effect in adult, male rats and to quantitate the concentration of DDE in tissues following oral exposures.

View Article and Find Full Text PDF