Progression of acute traumatic brain injury (TBI) into chronic neurodegeneration is a major health problem with no protective treatments. Here, we report that acutely elevated mitochondrial fission after TBI in mice triggers chronic neurodegeneration persisting 17 months later, equivalent to many human decades. We show that increased mitochondrial fission after mouse TBI is related to increased brain levels of mitochondrial fission 1 protein (Fis1) and that brain Fis1 is also elevated in human TBI.
View Article and Find Full Text PDFDeposition of extracellular Amyloid Beta (Aβ) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer's Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection.
View Article and Find Full Text PDFArrestins are multifunctional proteins that regulate G-protein-coupled receptor (GPCR) desensitization, signaling, and internalization. The arrestin family consists of four subtypes: visual arrestin1, β-arrestin1, β-arrestin2, and visual arrestin-4. Recent studies have revealed the multifunctional roles of β-arrestins beyond GPCR signaling, including scaffolding and adapter functions, and physically interacting with non-GPCR receptors.
View Article and Find Full Text PDFOxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
April 2023
TAS2Rs (bitter taste receptors) are GPCRs (G protein-coupled receptors) expressed on human airway smooth muscle (HASM) cells; when activated by receptor agonists they evoke marked airway relaxation. In both taste and HASM cells, TAS2Rs activate a canonical G-mediated stimulation of Ca release from intracellular stores by activation of PLCβ (phospholipase Cβ). Alone, this [Ca] signaling does not readily account for relaxation, particularly since bronchoconstrictive agonists acting at G-coupled receptors also increase [Ca].
View Article and Find Full Text PDFIncreasing evidence indicates that the accumulation misfolded proteins in Alzheimer's disease (AD) arises from clearance defects in the autophagy-lysosome pathway. Misfolded proteins such as Aβ and tau are secreted in small extracellular vesicles (i.e.
View Article and Find Full Text PDFCoiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a mitochondrial protein that plays important roles in cristae structure, oxidative phosphorylation and apoptosis. Multiple mutations in CHCHD2 have been associated with Lewy body disorders (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies, with the CHCHD2-T61I mutation being the most widely studied. However, at present, only CHCHD2 knockout or CHCHD2/CHCHD10 double knockout mouse models have been investigated.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) have been shown to play integral roles in Alzheimer's disease pathogenesis. However, it is unclear how diverse GPCRs similarly affect Aβ and tau pathogenesis. GPCRs share a common mechanism of action via the β-arrestin scaffolding signaling complexes, which not only serve to desensitize GPCRs by internalization, but also mediate multiple downstream signaling events.
View Article and Find Full Text PDFRare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis.
View Article and Find Full Text PDFAccumulation of toxic protein assemblies and damaged mitochondria are key features of neurodegenerative diseases, which arise in large part from clearance defects in the Macroautophagy/autophagy-lysosome system. The autophagy cargo receptor SQSTM1/p62 plays a major role in the clearance of ubiquitinated cargo through Ser403 phosphorylation by multiple kinases. However, no phosphatase is known to physiologically dephosphorylate SQSTM1 on this activating residue.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2020
Multiple G protein-coupled receptors (GPCRs) are targets in the treatment of dementia, and the arrestins are common to their signaling. β-Arrestin2 was significantly increased in brains of patients with frontotemporal lobar degeneration (FTLD-tau), a disease second to Alzheimer's as a cause of dementia. Genetic loss and overexpression experiments using genetically encoded reporters and defined mutant constructs in vitro, and in cell lines, primary neurons, and tau P301S mice crossed with β-arrestin2 mice, show that β-arrestin2 stabilizes pathogenic tau and promotes tau aggregation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. While the accumulation of Aβ is pivotal to the etiology of AD, both the microtubule-associated protein tau (MAPT) and the F-actin severing protein cofilin are necessary for the deleterious effects of Aβ. However, the molecular link between tau and cofilin remains unclear.
View Article and Find Full Text PDF