Publications by authors named "Teresa J Melink"

We previously demonstrated vast expansion of hypoxic areas in the leukemic microenvironment and provided a rationale for using hypoxia-activated prodrugs. PR104 is a phosphate ester that is rapidly hydrolyzed in vivo to the corresponding alcohol PR-104A and further reduced to the amine and hydroxyl-amine nitrogen mustards that induce DNA cross-linking in hypoxic cells under low oxygen concentrations. In this phase I/II study, patients with relapsed/refractory acute myeloid leukemia (n=40) after 1 or 2 prior treatments or acute lymphoblastic leukemia (n=10) after any number of prior treatments received PR104; dose ranged from 1.

View Article and Find Full Text PDF

Background: The purpose of this phase Ib clinical trial was to determine the maximum tolerated dose (MTD) of PR-104 a bioreductive pre-prodrug given in combination with gemcitabine or docetaxel in patients with advanced solid tumours.

Methods: PR-104 was administered as a one-hour intravenous infusion combined with docetaxel 60 to 75 mg/m2 on day one given with or without granulocyte colony stimulating factor (G-CSF) on day two or administrated with gemcitabine 800 mg/m2 on days one and eight, of a 21-day treatment cycle. Patients were assigned to one of ten PR-104 dose-levels ranging from 140 to 1100 mg/m2 and to one of four combination groups.

View Article and Find Full Text PDF

Background: The phosphate ester PR-104 is rapidly converted in vivo to the alcohol PR-104A, a nitrogen mustard prodrug that is metabolised to hydroxylamine (PR-104H) and amine (PR-104M) DNA crosslinking agents by one-electron reductases in hypoxic cells and by aldo-keto reductase 1C3 independently of oxygen. In a previous phase I study using a q 3 week schedule of PR-104, the maximum tolerated dose (MTD) was 1100 mg/m2 and fatigue, neutropenic fever and infection were dose-limiting. The primary objective of the current study was to determine the dose-limiting toxicity (DLT) and MTD of weekly PR-104.

View Article and Find Full Text PDF

Purpose: PR-104 is activated by reductases under hypoxia or by aldo-keto reductase 1C3 (AKR1C3) to form cytotoxic nitrogen mustards. Hepatocellular carcinoma (HCC) displays extensive hypoxia and expresses AKR1C3. This study evaluated the safety and efficacy of PR-104 plus sorafenib in HCC.

View Article and Find Full Text PDF

Background: PR-104 is a phosphate ester that is systemically converted to the corresponding alcohol PR-104A. The latter is activated by nitroreduction in tumours to cytotoxic DNA cross-linking metabolites. Here, we report a population pharmacokinetic (PK) model for PR-104 and PR-104A in non-human species and in humans.

View Article and Find Full Text PDF

Purpose: To evaluate idiotype (Id) vaccination as a single agent in previously treated patients with indolent non-Hodgkin's lymphoma.

Patients And Methods: Patients underwent biopsy for determination of their lymphoma-specific Id sequence. Recombinant Id protein was manufactured and covalently linked with keyhole limpet hemocyanin (KLH) to generate Id/KLH.

View Article and Find Full Text PDF