Biomass crops engineered to accumulate energy-dense triacylglycerols (TAG or 'vegetable oils') in their vegetative tissues have emerged as potential feedstocks to meet the growing demand for renewable diesel and sustainable aviation fuel (SAF). Unlike oil palm and oilseed crops, the current commercial sources of TAG, vegetative tissues, such as leaves and stems, only transiently accumulate TAG. In this report, we used grain (Texas430 or TX430) and sugar-accumulating 'sweet' (Ramada) genotypes of sorghum, a high-yielding, environmentally resilient biomass crop, to accumulate TAG in leaves and stems.
View Article and Find Full Text PDFUpregulation of triacylglycerols (TAGs) in vegetative plant tissues such as leaves has the potential to drastically increase the energy density and biomass yield of bioenergy crops. In this context, constraint-based analysis has the promise to improve metabolic engineering strategies. Here we present a core metabolism model for the C biomass crop () along with a minimal model for photosynthetic CO assimilation, sucrose and TAG biosynthesis in C plants.
View Article and Find Full Text PDFAnnu Rev Plant Biol
April 2020
Mathematical modeling of plant metabolism enables the plant science community to understand the organization of plant metabolism, obtain quantitative insights into metabolic functions, and derive engineering strategies for manipulation of metabolism. Among the various modeling approaches, metabolic pathway analysis can dissect the basic functional modes of subsections of core metabolism, such as photorespiration, and reveal how classical definitions of metabolic pathways have overlapping functionality. In the many studies using constraint-based modeling in plants, numerous computational tools are currently available to analyze large-scale and genome-scale metabolic networks.
View Article and Find Full Text PDFMany seeds are green during development, and light has been shown to play a role in the efficiency with which maternally supplied substrates are converted into storage compounds. However, the effects of light on the fluxes through central metabolism that determine this efficiency are poorly understood. Here, we used metabolic flux analysis to determine the effects of light on central metabolism in developing embryos of false flax ().
View Article and Find Full Text PDFMutually beneficial resource exchange is fundamental to global biogeochemical cycles and plant and animal nutrition. However, there is inherent potential conflict in mutualisms, as each organism benefits more when the exchange ratio ('price') minimizes its own costs and maximizes its benefits. Understanding the bargaining power that each partner has in these interactions is key to our ability to predict the exchange ratio and therefore the functionality of the cell, organism, community and ecosystem.
View Article and Find Full Text PDFNutritional mutualisms are ancient, widespread, and profoundly influential in biological communities and ecosystems. Although much is known about these interactions, comprehensive answers to fundamental questions, such as how resource availability and structured interactions influence mutualism persistence, are still lacking. Mathematical modelling of nutritional mutualisms has great potential to facilitate the search for comprehensive answers to these and other fundamental questions by connecting the physiological and genomic underpinnings of mutualisms with ecological and evolutionary processes.
View Article and Find Full Text PDFA well-established charge nurse orientation program was enhanced with the addition of a simulation, addressing three primary populations (the trifocus) with whom charge nurses interact: patients, patients' parents, and other staff members. In this pilot quality improvement project, 20 staff nurses enrolled in the orientation program and were assigned a mentor. Only one participant used the mentorship opportunity; therefore, it is not discussed here.
View Article and Find Full Text PDFBiosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays.
View Article and Find Full Text PDF