Publications by authors named "Teresa Guida"

Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop.

View Article and Find Full Text PDF

NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase.

View Article and Find Full Text PDF

The receptor tyrosine kinase AXL is overexpressed in many cancer types including thyroid carcinomas and has well established roles in tumor formation and progression. Proper folding, maturation, and activity of several oncogenic receptor tyrosine kinases require HSP90 chaperoning. HSP90 inhibition by the antibiotic geldanamycin or its derivative 17-allylamino-17-demethoxygeldanamycin (17-AAG) causes destabilization of its client proteins.

View Article and Find Full Text PDF

Context: Mutations of the RET receptor tyrosine kinase are associated to multiple endocrine neoplasia type 2 (MEN2) and sporadic medullary thyroid carcinoma (MTC). The heat shock protein (HSP) 90 chaperone is required for folding and stability of several kinases. HSP90 is specifically inhibited by 17-allyl-amino-17-demethoxygeldanamycin (17-AAG).

View Article and Find Full Text PDF

ZD6474 (vandetanib, Zactima, Astra Zeneca) is an anilinoquinazoline used to target the receptor tyrosine kinase RET in familial and sporadic thyroid carcinoma (IC(50): 100 nM). The aim of this study was to identify molecular determinants of RET sensitivity to ZD6474. Here, we show that mutation of RET tyrosine 806 to cysteine (Y806C) induced RET kinase resistance to ZD6474 (IC(50): 933 nM).

View Article and Find Full Text PDF

Purpose: Targeting of KIT and platelet-derived growth factor receptor (PDGFR) tyrosine kinases by imatinib is an effective anticancer strategy. However, mutations of the gatekeeper residue (T670 in KIT and T681 in PDGFRbeta) render the two kinases resistant to imatinib. The aim of this study was to evaluate whether sorafenib (BAY 43-9006), a multitargeted ATP-competitive inhibitor of KIT and PDGFR, was active against imatinib-resistant KIT and PDGFRbeta kinases.

View Article and Find Full Text PDF

Background: Medullary and papillary thyroid carcinomas are often associated with oncogenic activation of the RET tyrosine kinase. We evaluated whether the biaryl urea BAY 43-9006, which is known to inhibit several other tyrosine kinases, blocks RET kinase function and oncogenic activity.

Methods: We examined BAY 43-9006 activity against oncogenic RET in vitro and in cellular RET signaling in oncogenic RET-transfected NIH3T3 fibroblasts by using immunocomplex kinase assays and immunoblotting with phospho-specific antibodies.

View Article and Find Full Text PDF

Purpose: We performed this phase III study to compare the irinotecan, leucovorin (LV), and fluorouracil (FU) regimen (FOLFIRI) versus the oxaliplatin, LV, and FU regimen (FOLFOX4) in previously untreated patients with advanced colorectal cancer.

Patients And Methods: A total of 360 chemotherapy-naive patients were randomly assigned to receive, every 2 weeks, either arm A (FOLFIRI: irinotecan 180 mg/m(2) on day 1 with LV 100 mg/m(2) administered as a 2-hour infusion before FU 400 mg/m(2) administered as an intravenous bolus injection, and FU 600 mg/m(2) as a 22-hour infusion immediately after FU bolus injection on days 1 and 2 [LV5FU2]) or arm B (FOLFOX4: oxaliplatin 85 mg/m(2) on day 1 with LV5FU2 regimen).

Results: One hundred sixty-four and 172 patients were assessable in arm A and B, respectively.

View Article and Find Full Text PDF

Context: Anaplastic thyroid carcinomas (ATC) are among the most aggressive human malignancies and are characterized by high mitotic activity. Minichromosome maintenance proteins (MCM) 2-7 are required to initiate eukaryotic DNA replication, and their overexpression has been associated with dysplasia and malignancy.

Objective: In an attempt to cast light on the mechanisms governing ATC, we evaluated MCM5 and MCM7 expression in human normal, papillary (PTC), and anaplastic thyroid samples, as well as in primary culture cells and transgenic mouse models.

View Article and Find Full Text PDF

We have recently demonstrated that the pyrazolopyrimidines PP1 and PP2 and the 4-anilinoquinazoline ZD6474 display a strong inhibitory activity (IC(50)< or =100 nM) towards constitutively active oncogenic RET kinases. Here, we show that most oncogenic MEN2-associated RET kinase mutants are highly susceptible to PP1, PP2 and ZD6474 inhibition. In contrast, MEN2-associated swap of bulky hydrophobic leucine or methionine residues for valine 804 in the RET kinase domain causes resistance to the three compounds.

View Article and Find Full Text PDF

Inappropriate activation of the RET receptor tyrosine kinase causes development of papillary and medullary thyroid cancer. We have previously shown that pyrazolopyrimidine is a potent inhibitor of the RET kinase. Here, we show that 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) (PP2), another pyrazolopyrimidine, blocks the enzymatic activity of the isolated RET kinase and RET/PTC1 oncoprotein at IC(50) in the nanomolar range.

View Article and Find Full Text PDF

RET/papillary thyroid carcinoma (PTC) oncogenes, generated by recombination of the tyrosine kinase-encoding domain of RET with different heterologous genes, are prevalent in papillary carcinomas of the thyroid. Point mutations of RET cause multiple endocrine neoplasia type 2 (MEN2) familial cancer syndrome and are found in sporadic medullary thyroid carcinomas. Here, we show that ZD6474, a low molecular weight tyrosine kinase inhibitor, blocks the enzymatic activity of RET-derived oncoproteins at a one-half maximal inhibitory concentration of 100 nM.

View Article and Find Full Text PDF

Oncogenic activation of the RET receptor tyrosine kinase is common in different human cancers. We found that the pyrazolo-pyrimidine PP1 inhibited RET-derived oncoproteins with a half maximal inhibitor concentration of 80 nM. Furthermore, RET/PTC3-transformed cells treated with 5 microM of PP1 lost proliferative autonomy and showed morphological reversion.

View Article and Find Full Text PDF