Mutations in that increase its kinase activity are strongly linked to genetic forms of Parkinson's disease (PD). However, the regulation of endogenous wild-type (WT) LRRK2 kinase activity remains poorly understood, despite its frequent elevation in idiopathic PD (iPD) patients. Various stressors such as mitochondrial dysfunction, lysosomal dyshomeostasis, or vesicle trafficking deficits can activate WT LRRK2 kinase, but the specific molecular mechanisms are not fully understood.
View Article and Find Full Text PDFIndividuals with Parkinson's disease (PD) typically receive a diagnosis once they have developed motor symptoms, at which point there is already significant loss of substantia nigra dopamine neurons, α-synuclein accumulation in surviving neurons, and neuroinflammation. Consequently, the point of clinical presentation may be too late to initiate disease-modifying therapy. In contrast to this clinical reality, animal models often involve acute neurodegeneration and potential therapies are tested concurrently or shortly after the pathogenic insult has begun rather than later when diagnostic clinical symptoms emerge.
View Article and Find Full Text PDFMitochondrial dysfunction and oxidative stress are strongly implicated in Parkinson's disease (PD) pathogenesis and there is evidence that mitochondrially-generated superoxide can activate NADPH oxidase 2 (NOX2). Although NOX2 has been examined in the context of PD, most attention has focused on glial NOX2, and the role of neuronal NOX2 in PD remains to be defined. Additionally, pharmacological NOX2 inhibitors have typically lacked specificity.
View Article and Find Full Text PDFFerroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca-independent phospholipase Aβ (iPLAβ, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLAβ averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis.
View Article and Find Full Text PDFThe catecholamine neurotransmitter dopamine has the potential to act as an endogenous neurotoxin when its vesicular sequestration is dysregulated. Despite postmortem analyses from patients with Parkinson's disease that demonstrate decreased vesicular sequestration of dopamine with a corresponding increase in dopamine metabolism, dopamine's contribution to nigrostriatal dopaminergic degeneration in Parkinson's disease has been debated. Here, we present a new in vivo model demonstrating the induction of Parkinson's disease-associated pathogenic mechanisms of degeneration resulting from acquired dysregulation of dopamine sequestration in nigrostriatal dopaminergic neurons in adult rats.
View Article and Find Full Text PDFConvergent evidence implicates impaired mitochondrial function and α-Synuclein accumulation as critical upstream events in the pathogenesis of Parkinson's disease, but comparatively little is known about how these factors interact to provoke neurodegeneration. We previously showed that α-Synuclein knockdown protected rat substantia nigra dopaminergic neurons from systemic exposure to the mitochondrial complex I inhibitor rotenone. Here we show that motor abnormalities prior to neuronal loss in this model are associated with extensive α-Synuclein-dependent cellular thiol oxidation.
View Article and Find Full Text PDFLRRK2 has been implicated in endolysosomal function and likely plays a central role in idiopathic Parkinson's disease (iPD). In iPD, dopaminergic neurons within the substantia nigra are characterized by increased LRRK2 kinase activity, endolysosomal deficits, and accumulation of autophagic vesicles with incompletely degraded substrates, including α-synuclein. Although LRRK2 has been implicated in endolysosomal and autophagic function, it remains unclear whether inhibition of LRRK2 kinase activity can prevent endolysosomal deficits or reduce dopaminergic neurodegeneration.
View Article and Find Full Text PDFThere are currently no treatments that hinder or halt the inexorable progression of Parkinson's disease (PD). While the etiology of PD remains elusive, evidence suggests that early dysfunction of mitochondrial respiration and homeostasis play a major role in PD pathogenesis. The mitochondrial structural protein Mic60, also known as mitofilin, is critical for maintaining mitochondrial architecture and function.
View Article and Find Full Text PDFMissense mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD). However, a potential role of wild-type LRRK2 in idiopathic PD (iPD) remains unclear. Here, we developed proximity ligation assays to assess Ser1292 phosphorylation of LRRK2 and, separately, the dissociation of 14-3-3 proteins from LRRK2.
View Article and Find Full Text PDFα-Synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of Parkinson's disease (PD), and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of α-synuclein, and increased levels of α-synuclein cause mitochondrial impairment, but the basis for this bidirectional interaction remains obscure. We now report that certain posttranslationally modified species of α-synuclein bind with high affinity to the TOM20 (translocase of the outer membrane 20) presequence receptor of the mitochondrial protein import machinery.
View Article and Find Full Text PDFMitochondrial dysfunction has been implicated in Parkinson's disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function.
View Article and Find Full Text PDFMultiple convergent lines of evidence implicate both α-synuclein (encoded by SCNA) and mitochondrial dysfunction in the pathogenesis of sporadic Parkinson's disease (PD). Occupational exposure to the mitochondrial complex I inhibitor rotenone increases PD risk; rotenone-exposed rats show systemic mitochondrial defects but develop specific neuropathology, including α-synuclein aggregation and degeneration of substantia nigra dopaminergic neurons. Here, we inhibited expression of endogenous α-synuclein in the adult rat substantia nigra by adeno-associated virus-mediated delivery of a short hairpin RNA (shRNA) targeting the endogenous rat Snca transcript.
View Article and Find Full Text PDFOxidative stress and mitochondrial dysfunction are known to contribute to the pathogenesis of Parkinson's disease. Dopaminergic neurons may be more sensitive to these stressors because they contain dopamine (DA), a molecule that oxidizes to the electrophilic dopamine quinone (DAQ) which can covalently bind nucleophilic amino acid residues such as cysteine. The identification of proteins that are sensitive to covalent modification and functional alteration by DAQ is of great interest.
View Article and Find Full Text PDFThe pathogenic mechanisms that underlie Parkinson's disease remain unknown. Here, we review evidence from both sporadic and genetic forms of Parkinson's disease that implicate both mitochondria and oxidative stress as central players in disease pathogenesis. A systemic deficiency in complex I of the mitochondrial electron transport chain is evident in many patients with the disease.
View Article and Find Full Text PDFJ Bioenerg Biomembr
December 2009
The etiology of sporadic Parkinson's disease (PD) is unknown, although mitochondrial dysfunction and oxidative stress have been implicated in the mechanisms associated with PD pathogenesis. Dopamine (DA) neurons of the substantia nigra pars compacta have been shown to degenerate to a greater extent in PD than other neurons suggesting the possibility that DA itself may be contributing to the neurodegenerative process. This review discusses our work on the effects of DA oxidation and reactive DA quinones on mitochondrial function and protein modification and the potential for exacerbating toxicity associated with mitochondrial dysfunction in PD.
View Article and Find Full Text PDFIntracellular Zn(2+) toxicity is associated with mitochondrial dysfunction. Zn(2+) depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn(2+)-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP).
View Article and Find Full Text PDFDopamine oxidation has been previously demonstrated to cause dysfunction in mitochondrial respiration and membrane permeability, possibly related to covalent modification of critical proteins by the reactive dopamine quinone. However, specific mitochondrial protein targets have not been identified. In this study, we utilized proteomic techniques to identify proteins directly conjugated with (14)C-dopamine from isolated rat brain mitochondria exposed to radiolabeled dopamine quinone (150 microM) and differentiated SH-SY5Y cells treated with (14)C-dopamine (150 microM).
View Article and Find Full Text PDFIn Parkinson's disease, oxidative stress is implicated in protein misfolding and aggregation, which may activate the unfolded protein response by the endoplasmic reticulum (ER). Dopamine (DA) can initiate oxidative stress via H(2)O(2) formation by DA metabolism and by oxidation into DA quinone. We have previously shown that DA quinone induces oxidative protein modification, mitochondrial dysfunction in vitro, and dopaminergic cell toxicity in vivo and in vitro.
View Article and Find Full Text PDFOxidative stress and mitochondrial dysfunction have been linked to dopaminergic neuron degeneration in Parkinson disease. We have previously shown that dopamine oxidation leads to selective dopaminergic terminal degeneration in vivo and alters mitochondrial function in vitro. In this study, we utilized 2-D difference in-gel electrophoresis to assess changes in the mitochondrial proteome following in vitro exposure to reactive dopamine quinone.
View Article and Find Full Text PDFThe role of dopamine as a vulnerability factor and a toxic agent in Parkinson's disease (PD) is still controversial, yet the presumed dopamine toxicity is partly responsible for the "DOPA-sparing" clinical practice that avoids using L-3,4-dihydroxyphenylalanine (L-DOPA), a dopamine precursor, in early PD. There is a lack of studies on animal models that directly isolate dopamine as one determining factor in causing neurodegeneration. To address this, we have generated a novel transgenic mouse model in which striatal neurons are engineered to take up extracellular dopamine without acquiring regulatory mechanisms found in dopamine neurons.
View Article and Find Full Text PDFActivated microglia are an important feature of many neurological diseases and can be imaged in vivo using 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a ligand that binds the peripheral benzodiazepine receptor (PBR). N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide (DAA1106) is a new PBR-specific ligand that has been reported to bind to PBR with higher affinity compared with PK11195. We hypothesized that this high-affinity binding of DAA1106 to PBR will enable better delineation of microglia in vivo using positron emission tomography.
View Article and Find Full Text PDFAlpha-synuclein is a presynaptic protein strongly implicated in Parkinson's disease (PD). Because dopamine neurons are invariably compromised during pathogenesis in PD, we have been exploring the functions of alpha-synuclein with particular relevance to dopaminergic neuronal cells. We previously discovered reduced tyrosine hydroxylase (TH) activity and minimal dopamine synthesis in stably-transfected MN9D cells overexpressing either wild-type or A53T mutant (alanine to threonine at amino acid 53) alpha-synuclein.
View Article and Find Full Text PDFTEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) is a stable nitroxyl antioxidant. Previous studies have suggested that TEMPOL is protective in acute disorders thought to involve reactive oxygen species (ROS), such as ischemic stroke and cardiac reperfusion injury. Oxidized TEMPOL can be recycled to its redox-active reducing form by co-administration with polynitroxylated albumin, making it a candidate as a pharmacological "reservoir" for reducing potential of use in chronic disorders involving ROS.
View Article and Find Full Text PDFAntioxid Redox Signal
September 2005
Deficiencies in Complex I have been observed in Parkinson's disease (PD) patients. Systemic exposure to rotenone, a Complex I inhibitor, has been shown to lead to selective dopaminergic cell death in vivo and toxicity in many in vitro models, including dopaminergic cell cultures. However, it remains unclear why rotenone seems to affect dopaminergic cells more adversely.
View Article and Find Full Text PDF