Publications by authors named "Teresa E Madsen"

Recognizing reward-related stimuli is crucial for survival. Neuronal projections from the basolateral amygdala (BLA) to the nucleus accumbens (NAc) play an important role in processing reward-related cues. Previous studies revealed synchronization between distant brain regions in reward-sensitive neurocircuits; however, whether the NAc synchronizes with the BLA is unknown.

View Article and Find Full Text PDF

Oxygenated (HBO) and deoxygenated hemoglobin (HBR) levels in the prefrontal cortex (PFC) were measured using functional near-infrared spectroscopy (fNIRS) to determine if PFC activity during a cognitive inhibition task distinguishes children with prenatal alcohol exposure (PAE, n = 26) from both typically developing controls (n = 19) and a contrast group of children with other neurobehavioral problems (n = 14). Despite showing evidence of increased PFC activity in the non-inhibitory condition relative to controls, children in the PAE group displayed reduced PFC HBO and increased HBR relative to both other groups in the inhibitory condition, suggesting reduced PFC activity but increased oxygen consumption without sufficient oxygen replacement.

View Article and Find Full Text PDF

We have developed a new headstage architecture as part of a smart experimental arena, known as the EnerCage-HC2 system, which automatically delivers stimulation and collects behavioral data over extended periods with minimal small animal subject handling or personnel intervention in a standard rodent homecage. Equipped with a four-coil inductive link, the EnerCage-HC2 system wirelessly powers the receiver (Rx) headstage, irrespective of the subject's location or head orientation, eliminating the need for tethering or carrying bulky batteries. On the transmitter (Tx) side, a driver coil, five high-quality (Q) factor segmented resonators at different heights and orientations, and a closed-loop Tx power controller create a homogeneous electromagnetic (EM) field within the homecage 3-D space, and compensate for drops in power transfer efficiency (PTE) due to Rx misalignments.

View Article and Find Full Text PDF

This paper presents a new EnerCage-homecage system, EnerCage-HC2, for longitudinal electrophysiology data acquisition experiments on small freely moving animal subjects, such as rodents. EnerCage-HC2 is equipped with multi-coil wireless power transmission (WPT), closed-loop power control, bidirectional data communication via Bluetooth Low Energy (BLE), and Microsoft Kinect® based animal behavior tracking and analysis. The EnerCage-HC2 achieves a homogeneous power transfer efficiency (PTE) of 14% on average, with ~42 mW power delivered to the load (PDL) at a nominal height of 7 cm by the closed-loop power control mechanism.

View Article and Find Full Text PDF

We present here a microfabricated, multi-functional neural interface with the ability to selectively apply electrical and chemical stimuli, while simultaneously monitoring both electrical and chemical activity in the brain. Such a comprehensive approach is required to understand and treat neuropsychiatric disorders, such as major depressive disorder (MDD), and to understand the mechanisms underlying treatments, such as pharmaceutical therapies and deep brain stimulation (DBS). The polymer-based, multi-functional neural interface is capable of electrical stimulation and recording, targeted drug delivery, and electrochemical sensing.

View Article and Find Full Text PDF

The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2-6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons.

View Article and Find Full Text PDF