Publications by authors named "Teresa DiColandrea"

Increased prevalence of skin ageing is a growing concern due to an ageing global population and has both sociological and psychological implications. The use of more clinically predictive in vitro methods for dermatological research is becoming commonplace due to initiatives and the cost of clinical testing. In this study, we utilise a well-defined and characterised bioengineered skin construct as a tool to investigate the cellular and molecular dynamics involved in skin ageing from a dermal perspective.

View Article and Find Full Text PDF

Skin ageing is an intricate physiological process affected by intrinsic and extrinsic factors. There is a demand to understand how the skin changes with age and photoexposure in individuals with Fitzpatrick skin types I-III due to accelerated photoageing and the risk of cutaneous malignancies. To assess the structural impact of intrinsic and extrinsic ageing, we analysed 14 skin parameters from the photoprotected buttock and photoexposed dorsal forearm of young and ageing females with Fitzpatrick skin types II-III (n = 20) using histomorphic techniques.

View Article and Find Full Text PDF

Background: Cultured human skin models have been widely used in the evaluation of dermato-cosmetic products as alternatives to animal testing and expensive clinical testing. The most common in vitro skin culture approach is to maintain skin biopsies in an airlifted condition at the interface of the supporting culture medium and the air phase. This type of ex vivo skin explant culture is not, however, adequate for the testing of cleansing products, such as shampoos and body washes.

View Article and Find Full Text PDF

Human skin ageing is a complex and heterogeneous process, which is influenced by genetically determined intrinsic factors and accelerated by cumulative exposure to extrinsic stressors. In the current world ageing demographic, there is a requirement for a bioengineered ageing skin model, to further the understanding of the intricate molecular mechanisms of skin ageing, and provide a distinct and biologically relevant platform for testing actives and formulations. There have been many recent advances in the development of skin models that recapitulate aspects of the ageing phenotype in vitro.

View Article and Find Full Text PDF

Access to complex in vitro models that recapitulate the unique markers and cell-cell interactions of the hair follicle is rather limited. Creation of scalable, affordable, and relevant in vitro systems which can provide predictive screens of cosmetic ingredients and therapeutic actives for hair health would be highly valued. In this study, we explore the features of the microfollicle, a human hair follicle organoid model based on the spatio-temporally defined co-culture of primary cells.

View Article and Find Full Text PDF

Human skin equivalents (HSEs) are a valuable tool for both academic and industrial laboratories to further the understanding of skin physiology and associated diseases. Over the last few decades, there have been many advances in the development of HSEs that successfully recapitulate the structure of human skin in vitro; however a main limitation is variability due to the use of complex protocols and exogenous extracellular matrix (ECM) proteins. We have developed a robust and unique full-thickness skin equivalent that is highly reproducible due to the use of a consistent scaffold, commercially available cells, and defined low-serum media.

View Article and Find Full Text PDF

Recreating the structure of human tissues in the laboratory is valuable for fundamental research, testing interventions, and reducing the use of animals. Critical to the use of such technology is the ability to produce tissue models that accurately reproduce the microanatomy of the native tissue. Current artificial cell-based skin systems lack thorough characterisation, are not representative of human skin, and can show variation.

View Article and Find Full Text PDF

Background: The barrier function of the epidermis is integral to personal well-being, and defects in the skin barrier are associated with several widespread diseases. Currently there is a limited understanding of system-level proteomic changes during epidermal stratification and barrier establishment.

Objective: Here we report the quantitative proteogenomic profile of an in vitro reconstituted epidermis at three time points of development in order to characterize protein changes during stratification.

View Article and Find Full Text PDF

The hair cycle is a dynamic process where follicles repeatedly move through phases of growth, retraction, and relative quiescence. This process is an example of temporal and spatial biological complexity. Understanding of the hair cycle and its regulation would shed light on many other complex systems relevant to biological and medical research.

View Article and Find Full Text PDF

Background: Barrier function is integral to the health of epithelial tissues. Currently, there is a broad need to develop and improve our knowledge with regard to barrier function for reversal of mild skin irritation and dryness. However, there are few in vitro models that incorporate modulations of both lipids and epidermal differentiation programs for pre-clinical testing to aid in the understanding of barrier health.

View Article and Find Full Text PDF

Periplakin forms part of the scaffold onto which the epidermal cornified envelope is assembled. The NH2-terminal 133 amino acids mediate association with the plasma membrane and bind a novel protein, kazrin. Kazrin is highly conserved and lacks homology to any known protein.

View Article and Find Full Text PDF