Publications by authors named "Teresa D'Altri"

Article Synopsis
  • Research data management (RDM) is crucial for implementing FAIR and Open Science principles, leading to the development of valuable tools and resources for effective data management in scientific research.
  • Despite the valuable resources produced by ELIXIR Platforms and Nodes, they are currently scattered, creating challenges in their application and dissemination, highlighting the need for coordinated RDM efforts.
  • The proposed ELIXIR RDM Community aims to unify RDM experts, enhance knowledge exchange, provide training, and develop best practices, thereby strengthening RDM skills and addressing the evolving needs within the scientific community.
View Article and Find Full Text PDF

The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPA) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPA), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations.

View Article and Find Full Text PDF

The European Genome-phenome Archive (EGA - https://ega-archive.org/) is a resource for long term secure archiving of all types of potentially identifiable genetic, phenotypic, and clinical data resulting from biomedical research projects. Its mission is to foster hosted data reuse, enable reproducibility, and accelerate biomedical and translational research in line with the FAIR principles.

View Article and Find Full Text PDF

Rearrangements involving the mixed lineage leukemia gene (MLL) are found in the majority of leukemias that develop within the first year of age, known as infant leukemias, and likely originate during prenatal life. MLL rearrangements are also present in about 10% of other pediatric and adult acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). These translocations and others occurring in early life are associated with a dismal prognosis compared with adult leukemias carrying the same translocations.

View Article and Find Full Text PDF

ASXL1 is one of the most commonly mutated genes in myeloid malignancies, including Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). In order to further our understanding of the role of ASXL1 lesions in malignant hematopoiesis, we generated a novel knock-in mouse model carrying the most frequent ASXL1 mutation identified in MDS patients, p.G643WfsX12.

View Article and Find Full Text PDF

The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human mutant AML and the corresponding mouse model, we identified , encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene.

View Article and Find Full Text PDF

Objectives: Familial cases of hematological malignancies are associated with germline mutations. In particular, heterozygous mutations of SRP72 correlate with the development of myelodysplasia and bone marrow aplasia in two families. The signal recognition particle 72 kDa protein (SRP72) is part of the SRP complex, responsible for targeting of proteins to the endoplasmic reticulum.

View Article and Find Full Text PDF

Development of human hematopoietic stem cells and differentiation of embryonic stem (ES) cells/induced pluripotent stem (iPS) cells to hematopoietic stem cells are poorly understood. NOD (Non-obese diabetic)-derived mouse strains, such as NSG (NOD-Scid-il2Rg) or NRG (NOD-Rag1-il2Rg), are the best available models for studying the function of fetal and adult human hematopoietic cells as well as ES/iPS cell-derived hematopoietic stem cells. Unfortunately, engraftment of human hematopoietic stem cells is very variable in these models.

View Article and Find Full Text PDF

Notch is a family of transmembrane receptors that participate in the regulation of cell differentiation, proliferation, and stemness. Notch pathway activation has also been found associated with different human cancers including primary cutaneous T-cell lymphomas (CTCL). The elucidation of the mechanisms driving Notch activation in these particular diseases has remained elusive.

View Article and Find Full Text PDF

Notch1 is required to generate the earliest embryonic hematopoietic stem cells (HSCs); however since Notch-deficient embryos die early in gestation, additional functions for Notch in embryonic HSC biology have not been described. We used two complementary genetic models to address this important biological question. Unlike Notch1-deficient mice, mice lacking the conserved Notch1 transcriptional activation domain (TAD) show attenuated Notch1 function in vivo and survive until late gestation, succumbing to multiple cardiac abnormalities.

View Article and Find Full Text PDF

Previous studies have identified Notch as a key regulator of hematopoietic stem cell (HSC) development, but the underlying downstream mechanisms remain unknown. The Notch target Hes1 is widely expressed in the aortic endothelium and hematopoietic clusters, though Hes1-deficient mice show no overt hematopoietic abnormalities. We now demonstrate that Hes is required for the development of HSC in the mouse embryo, a function previously undetected as the result of functional compensation by de novo expression of Hes5 in the aorta/gonad/mesonephros (AGM) region of Hes1 mutants.

View Article and Find Full Text PDF

Understanding how hematopoietic stem cells (HSCs) are generated and the signals that control this process is a crucial issue for regenerative medicine applications that require in vitro production of HSC. HSCs emerge during embryonic life from an endothelial-like cell population that resides in the aorta-gonad-mesonephros (AGM) region. We show here that β-catenin is nuclear and active in few endothelial nonhematopoietic cells closely associated with the emerging hematopoietic clusters of the embryonic aorta during mouse development.

View Article and Find Full Text PDF

Hematopoiesis is the process that generates all the cell types of the blood, which are responsible for oxygen transport and immune defense. It has been now more than 50 years from the demonstration that blood cells derive from a common ancestor called Hematopoietic Stem Cell (HSC) McCulloch and Till (1960). Thus, the hematopoietic process relies on the unlimited and distinctive self-renewal ability of HSC, which in the adult mammalian organisms reside in the bone marrow, but their generation occurs during embryonic life.

View Article and Find Full Text PDF

Notch activation is a current event in T Acute Lymphoblastic Leukemia (T-ALL) but the downstream elements that are able to support Notch-dependent leukemias are not well characterized. We have recently shown that the Notch-Hes1-CYLD-NFkB axis is crucial in the maintenance of T-ALL, but detailed evaluation of the contribution of each one of these elements is still missing. Here we use a Notch1-induced leukemia in vivo model to study the effect of silencing the Notch-target gene, Hes1, or over-expressing the Hes1-target, CYLD.

View Article and Find Full Text PDF

It was previously shown that the NF-κB pathway is downstream of oncogenic Notch1 in T cell acute lymphoblastic leukemia (T-ALL). Here, we visualize Notch-induced NF-κB activation using both human T-ALL cell lines and animal models. We demonstrate that Hes1, a canonical Notch target and transcriptional repressor, is responsible for sustaining IKK activation in T-ALL.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioniq0b649dr1dnlrjonrivo2hqepllptck): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once