In vitro and ex vivo studies are crucial for mitochondrial research, offering valuable insights into cellular mechanisms and aiding in diagnostic and therapeutic strategies. Accurate in vitro models rely on adequate cell culture conditions, such as the composition of culture media and oxygenation levels. These conditions can influence energy metabolism and mitochondrial activities, thus impacting studies involving mitochondrial components, such as the effectiveness of anticancer drugs.
View Article and Find Full Text PDFS-1 MitoPlates™ from Biolog enable the characterization of mitochondria's function in live cells by measuring the rates of electron flow into and through the electron transport chain from different NADH or FADH producing metabolic substrates. This technology uses 96-well microplates pre-coated with triplicate repeats of a set of 31 substrates. Those 31 metabolic substrates have different routes of entry into the mitochondria, use different transporters, and are also oxidated by different dehydrogenases, producing reducing equivalents in the form of NADH or FADH.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Aging and lifestyle-related diseases, such as cardiovascular diseases, diabetes, cancer, and neurodegenerative disorders, are major global health challenges. These conditions are often linked to redox imbalances, where cells fail to regulate reactive redox species (RRS), leading to oxidative stress and cellular damage. Although antioxidants are known to neutralize harmful RRS, their clinical efficacy remains inconsistent.
View Article and Find Full Text PDFEffective data management is crucial for scientific integrity and reproducibility, a cornerstone of scientific progress. Well-organized and well-documented data enable validation and building on results. Data management encompasses activities including organization, documentation, storage, sharing, and preservation.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS.
View Article and Find Full Text PDFIntra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy.
View Article and Find Full Text PDFMaternal obesity (MO) is rising worldwide, affecting half of all gestations, constituting a possible risk-factor for some pregnancy-associated liver diseases (PALD) and hepatic diseases. PALD occur in approximately 3% of pregnancies and are characterized by maternal hepatic oxidative stress (OS) and mitochondrial dysfunction. Maternal hepatic disease increases maternal and fetal morbidity and mortality.
View Article and Find Full Text PDFTheragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches.
View Article and Find Full Text PDFThe NRF2-KEAP1 system is a fundamental component of the cellular response that controls a great variety of transcriptional targets that are mainly involved in the regulation of redox homeostasis and multiple cytoprotective mechanisms that confer adaptation to the stress conditions. The pleiotropic response orchestrated by NRF2 is particularly relevant in the context of oncogenic activation, wherein this transcription factor acts as a key driver of tumor progression and cancer cells' resistance to treatment. For this reason, NRF2 has emerged as a promising therapeutic target in cancer cells, stimulating extensive research aimed at the identification of natural, as well as chemical, NRF2 inhibitors.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with a rapid progression and no effective treatment. Metabolic and mitochondrial alterations in peripheral tissues of ALS patients may present diagnostic and therapeutic interest. We aimed to identify mitochondrial fingerprints in lymphoblast from ALS patients harboring SOD1 mutations (mutSOD1) or with unidentified mutations (undSOD1), compared with age-/sex-matched controls.
View Article and Find Full Text PDFRedox Biol
September 2022
Non-alcoholic fatty liver disease (NAFLD) is a health concern affecting 24% of the population worldwide. Although the pathophysiologic mechanisms underlying disease are not fully clarified, mitochondrial dysfunction and oxidative stress are key players in disease progression. Consequently, efforts to develop more efficient pharmacologic strategies targeting mitochondria for NAFLD prevention/treatment are underway.
View Article and Find Full Text PDFBackground: Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease that affects motor neurons. This disease is associated with oxidative stress especially in mutant superoxide dismutase 1 (mutSOD1) patients. However, less is known for the most prevalent sporadic ALS form, due to a lack of disease models.
View Article and Find Full Text PDFWith the increase in life expectancy and consequent aging of the world's population, the prevalence of many neurodegenerative diseases is increasing, without concomitant improvement in diagnostics and therapeutics. These diseases share neuropathological hallmarks, including mitochondrial dysfunction. In fact, as mitochondrial alterations appear prior to neuronal cell death at an early phase of a disease's onset, the study and modulation of mitochondrial alterations have emerged as promising strategies to predict and prevent neurotoxicity and neuronal cell death before the onset of cell viability alterations.
View Article and Find Full Text PDFCell culture conditions highly influence cell metabolism in vitro. This is relevant for preclinical assays, for which fibroblasts are an interesting cell model, with applications in regenerative medicine, diagnostics and therapeutic development for personalized medicine, and the validation of ingredients for cosmetics. Given these cells' short lifespan in culture, we aimed to identify the best cell culture conditions and promising markers to study mitochondrial health and stress in normal human dermal fibroblasts (NHDF).
View Article and Find Full Text PDFAlterations in mitochondrial dynamics, including their intracellular trafficking, are common early manifestations of neuronal degeneration. However, current methodologies used to study mitochondrial trafficking events rely on parameters that are primarily altered in later stages of neurodegeneration. Our objective was to establish a reliable applied statistical analysis to detect early alterations in neuronal mitochondrial trafficking.
View Article and Find Full Text PDFParkinson's Disease (PD) is a neurodegenerative disorder affecting more than 10 million people worldwide. Currently, PD has no cure and no early diagnostics methods exist. Mitochondrial dysfunction is presented in the early stages of PD, and it is considered an important pathophysiology component.
View Article and Find Full Text PDFMitochondria play a key role in cell death and its regulation. The permeabilization of the outer mitochondrial membrane, which is mainly controlled by proteins of the BCL-2 family, is a key event that can be directly induced by different signaling pathways, including p53-mediated, and results in the release of proapoptotic factors to the cytosol, such as cytochrome c, second mitochondria-derived activator of caspases/direct inhibitor-of-apoptosis (IAP) binding protein with low pI (SMAC/Diablo), Omi serine protease (Omi/HtrA2), apoptosis-inducing factor (AIF), or endonuclease G (Endo-G). Hence, the determination of subcellular localization of these proteins is extremely important to predict cell fate and elucidate the specific mechanism of apoptosis.
View Article and Find Full Text PDFPoor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity.
View Article and Find Full Text PDFMutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel.
View Article and Find Full Text PDFSince most models used to study neuronal dysfunction display disadvantages and ethical concerns, a fast and reproducible in vitro model to study mitochondria-related neurodegeneration is required. Here, we optimized and characterized a 3-day retinoic acid-based protocol to differentiate the SH-SY5Y cell line into a neuronal-like phenotype and investigated alterations in mitochondrial physiology and distribution. Differentiation was associated with p21-linked cell cycle arrest and an increase in cell mass and area, possibly associated with the development of neurite-like extensions.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2-5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS.
View Article and Find Full Text PDFBackground: Changes in the nutritional environment in utero induced by maternal obesity (MO) lead to foetal metabolic dysfunction predisposing offspring to later-life metabolic diseases. Since mitochondria play a crucial role in hepatic metabolism and function, we hypothesized that MO prior to conception and throughout pregnancy programmes foetal sheep liver mitochondrial phenotype.
Material And Methods: Ewes ate an obesogenic diet (150% requirements; MO), or 100% requirements (CTR), from 60 days prior to conception.
Circadian rhythms disruption can be the cause of chronic diseases. External cues, including therapeutic drugs, have been shown to modulate peripheral-circadian clocks. Since anthracycline cardiotoxicity is associated with loss of mitochondrial function and metabolic remodeling, we investigated whether the energetic failure induced by sub-chronic doxorubicin (DOX) treatment in juvenile mice was associated with persistent disruption of circadian regulators.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
March 2020
Parkinson's Disease (PD) is characterized by dopaminergic neurodegeneration in the substantia nigra. The exact mechanism by which dopaminergic neurodegeneration occurs is still unknown; however, mitochondrial dysfunction has long been implicated in PD pathogenesis. To investigate the sub-cellular events that lead to disease progression and to develop personalized interventions, non-neuronal cells which are collected in a minimally invasive manner can be key to test interventions aimed at improving mitochondrial function.
View Article and Find Full Text PDF