Publications by authors named "Teresa Capell"

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform.

View Article and Find Full Text PDF

Modification of silent latent endosperm-enabled promoters (SLEEPERs) allows the ectopic activation of non-expressed metabolic genes in rice callus Metabolic engineering in plants typically involves transgene expression or the mutation of endogenous genes. An alternative is promoter modification, where small changes in the promoter sequence allow genes to be switched on or off in particular tissues. To activate silent genes in rice endosperm, we screened native promoters for near-miss cis-acting elements that can be converted to endosperm-active regulatory motifs.

View Article and Find Full Text PDF

Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic, and biomedical industries belong to the terpenoid family. Biosynthesis of these chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing plants for use as a platform to use IPP/DMAPP and produce high value terpenoids is an important biotechnological goal.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike.

View Article and Find Full Text PDF

Engineering cereals to express functional nitrogenase is a long-term goal of plant biotechnology and would permit partial or total replacement of synthetic N fertilizers by metabolization of atmospheric N. Developing this technology is hindered by the genetic and biochemical complexity of nitrogenase biosynthesis. Nitrogenase and many of the accessory proteins involved in its assembly and function are O sensitive and only sparingly soluble in non-native hosts.

View Article and Find Full Text PDF

The engineering of nitrogen fixation in plants requires assembly of an active prokaryotic nitrogenase complex, which is yet to be achieved. Nitrogenase biogenesis relies on NifB, which catalyzes the formation of the [8Fe-9S-C] metal cluster NifB-co. This is the first committed step in the biosynthesis of the iron-molybdenum cofactor (FeMo-co) found at the nitrogenase active site.

View Article and Find Full Text PDF

Crocins are high-value compounds with industrial and food applications. Saffron is currently the main source of these soluble pigments, but its high market price hinders its use by sectors, such as pharmaceutics. Enzymes involved in the production of these compounds have been identified in saffron, Buddleja, and gardenia.

View Article and Find Full Text PDF

Carotenoids are a large class of important lipid-soluble phytonutrients that are widely used as nutritional supplements due to their health-promoting activities. For example, β-carotene is the precursor for vitamin A synthesis, and astaxanthin is a powerful antioxidant. However, these carotenoids cannot be synthesized de novo by humans.

View Article and Find Full Text PDF

We report the development of an efficient and reproducible genetic transformation system for the recalcitrant Spanish elite rice paella genotype, Bomba. Preconditioned embryos derived from dry seeds were bombarded with gold particles carrying a plasmid containing a screenable and a selectable marker. We confirmed integration and expression of hpt and gusA in the rice genome.

View Article and Find Full Text PDF

Crocins are high-value soluble pigments that are used as colorants and supplements, their presence in nature is extremely limited and, consequently, the high cost of these metabolites hinders their use by other sectors, such as the pharmaceutical and cosmetic industries. The carotenoid cleavage dioxygenase 2L () is the key enzyme in the biosynthetic pathway of crocins in . In this study, was introduced into and for the production of crocins.

View Article and Find Full Text PDF

Isoprenoids are natural products derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, these precursors are synthesized via the cytosolic mevalonate (MVA) and plastidial methylerythritol phosphate (MEP) pathways. The regulation of these pathways must therefore be understood in detail to develop effective strategies for isoprenoid metabolic engineering.

View Article and Find Full Text PDF

Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro.

View Article and Find Full Text PDF

Light is an essential regulator of many developmental processes in higher plants. We investigated the effect of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 1/2 genes () and isopentenyl diphosphate isomerase 1/2 genes () on the biosynthesis of chlorophylls, carotenoids, and phytosterols in 14-day-old etiolated rice ( L.) leaves during de-etiolation.

View Article and Find Full Text PDF

Breeding has been used successfully for many years in the fruit industry, giving rise to most of today's commercial fruit cultivars. More recently, new molecular breeding techniques have addressed some of the constraints of conventional breeding. However, the development and commercial introduction of such novel fruits has been slow and limited with only five genetically engineered fruits currently produced as commercial varieties-virus-resistant papaya and squash were commercialized 25 years ago, whereas insect-resistant eggplant, non-browning apple, and pink-fleshed pineapple have been approved for commercialization within the last 6 years and production continues to increase every year.

View Article and Find Full Text PDF

Genome-editing technologies offer unprecedented opportunities for crop improvement with superior precision and speed. This review presents an analysis of the current state of genome editing in the major cereal crops- rice, maize, wheat and barley. Genome editing has been used to achieve important agronomic and quality traits in cereals.

View Article and Find Full Text PDF

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system.

View Article and Find Full Text PDF

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain.

View Article and Find Full Text PDF

Multi-gene transformation methods need to be able to introduce multiple transgenes into plants in order to reconstitute a transgenic locus where the introduced genes express in a coordinated manner and do not segregate in subsequent generations. This simultaneous multiple gene transfer enables the study and modulation of the entire metabolic pathways and the elucidation of complex genetic control circuits and regulatory hierarchies. We used combinatorial nuclear transformation to produce multiplex-transgenic maize plants.

View Article and Find Full Text PDF

The conventional breeding of fruits and fruit trees has led to the improvement of consumer-driven traits such as fruit size, yield, nutritional properties, aroma and taste, as well as the introduction of agronomic properties such as disease resistance. However, even with the assistance of modern molecular approaches such as marker-assisted selection, the improvement of fruit varieties by conventional breeding takes considerable time and effort. The advent of genetic engineering led to the rapid development of new varieties by allowing the direct introduction of genes into elite lines.

View Article and Find Full Text PDF

Nucleus-encoded plastid proteins are synthesized as precursors with N-terminal targeting signals called transit peptides (TPs), which mediate interactions with the translocon complexes at the outer (TOC) and inner (TIC) plastid membranes. These complexes exist in multiple isoforms in higher plants and show differential specificity and tissue abundance. While some show specificity for photosynthesis-related precursor proteins, others distinctly recognize nonphotosynthetic and housekeeping precursor proteins.

View Article and Find Full Text PDF

Starch properties can be modified by mutating genes responsible for the synthesis of amylose and amylopectin in the endosperm. However, little is known about the effects of such targeted modifications on the overall starch biosynthesis pathway and broader metabolism. Here we investigated the effects of mutating the gene encoding starch branching enzyme IIb, which is required for amylopectin synthesis in the endosperm.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus responsible for an ongoing human pandemic (COVID-19). There is a massive international effort underway to develop diagnostic reagents, vaccines, and antiviral drugs in a bid to slow down the spread of the disease and save lives. One part of that international effort involves the research community working with plants, bringing researchers from all over the world together with commercial enterprises to achieve the rapid supply of protein antigens and antibodies for diagnostic kits, and scalable production systems for the emergency manufacturing of vaccines and antiviral drugs.

View Article and Find Full Text PDF

Both OsIPPI1 and OsIPPI2 enzymes are found in the endoplasmic reticulum, providing novel important insights into the role of this compartment in the synthesis of MVA pathway isoprenoids. Isoprenoids are synthesized from the precursor's isopentenyl diphosphate (IPP) and dimethylallyl diphosphosphate (DMAPP), which are interconverted by the enzyme isopentenyl diphosphate isomerase (IPPI). Many plants express multiple isoforms of IPPI, the only enzyme shared by the mevalonate (MVA) and non-mevalonate (MEP) pathways, but little is known about their specific roles.

View Article and Find Full Text PDF

The ratio of nicotianamine to deoxymugenic acid controls tissue-specific metal homeostasis in rice and regulates metal delivery to the endosperm. The metal-chelating phytosiderophores nicotianamine (NA) and 2'deoxymugenic acid (DMA) are significant factors for the control of metal homeostasis in graminaceous plants. These compounds are thought to influence metal homeostasis, but their individual roles and the effect of altering the NA:DMA ratio are unknown.

View Article and Find Full Text PDF