Background: Multiple system atrophy (MSA) is a rare oligodendroglial synucleinopathy of unknown etiopathogenesis including two major clinical variants with predominant parkinsonism (MSA-P) or cerebellar dysfunction (MSA-C).
Objective: To identify novel disease mechanisms we performed a blood transcriptomic study investigating differential gene expression changes and biological process alterations in MSA and its clinical subtypes.
Methods: We compared the transcriptome from rigorously gender and age-balanced groups of 10 probable MSA-P, 10 probable MSA-C cases, 10 controls from the Catalan MSA Registry (CMSAR), and 10 Parkinson Disease (PD) patients.
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative monogenetic disorder affecting carriers of premutation (PM) forms of the gene, resulting in a progressive development of tremors, ataxia, and neuropsychological problems. This highly disabling disease is quite common in the general population with an estimation of about 20 million PM carriers worldwide. The chances of developing FXTAS increase dramatically with age, with about 45% of male carriers over the age of 50 being affected.
View Article and Find Full Text PDFThe mechanisms that regulate the switch between epidermal progenitor state and differentiation are not fully understood. Recent findings indicate that the chromatin remodelling BAF complex (Brg1-associated factor complex or SWI/SNF complex) and the transcription factor p63 mutually recruit one another to open chromatin during epidermal differentiation. Here, we identify a long non-coding transcript that includes an ultraconserved element, uc.
View Article and Find Full Text PDFRecent evidence indicates that specific RNAs promote the formation of ribonucleoprotein condensates by acting as scaffolds for RNA-binding proteins (RBPs). We systematically investigated RNA-RBP interaction networks to understand ribonucleoprotein assembly. We found that highly contacted RNAs are structured, have long UTRs, and contain nucleotide repeat expansions.
View Article and Find Full Text PDFMicroRNA (miRNA) misregulation in peripheral blood has been linked to Parkinson disease (PD) but its role in the disease progression remains elusive. We performed an explorative genome-wide study of miRNA expression levels in dopaminergic neurons (DAn) from PD patients generated by somatic cell reprogramming and induced pluripotent stem cells differentiation. We quantified expression levels of 377 miRNAs in DAn from 3 sporadic PD patients (sPD), 3 leucine-rich repeat kinase 2-associated PD patients (L2PD) (total 6 PD), and 4 healthy controls.
View Article and Find Full Text PDFRecent evidence indicates a link between Parkinson's Disease (PD) and the expression of a-synuclein (SNCA) isoforms with different 3' untranslated regions (3'UTRs). Yet, the post-transcriptional mechanisms regulating SNCA expression are unknown. Using a large-scale in vitro /in silico screening we identified RNA-binding proteins (RBPs) that interact with SNCA 3' UTRs.
View Article and Find Full Text PDFFragile X-associated tremor/ataxia syndrome (FXTAS) is an inherited neurodegenerative disorder manifesting in carriers of 55 to 200 CGG repeats in the 5' untranslated region (UTR) of the fragile X mental retardation gene (FMR1). FXTAS is characterized by enhanced FMR1 transcription and the accumulation of CGG repeat-containing FMR1 messenger RNA in nuclear foci, while the FMRP protein expression levels remain normal or moderately low. The neuropathological hallmark in FXTAS is the presence of intranuclear, ubiquitin-positive inclusions that also contain FMR1 transcript.
View Article and Find Full Text PDFIt has been reported that genes up-regulated in cancer are often down-regulated in neurodegenerative disorders and vice versa. The fact that apparently unrelated diseases share functional pathways suggests a link between their etiopathogenesis and the properties of molecules involved. Are there specific features that explain the exclusive association of proteins with either cancer or neurodegeneration? We performed a large-scale analysis of physico-chemical properties to understand what characteristics differentiate classes of diseases.
View Article and Find Full Text PDFAccess to genome-wide data provides the opportunity to address questions concerning the ability of transcription factors (TFs) to assemble in distinct macromolecular complexes. Here, we introduce the PAnDA (Protein And DNA Associations) approach to characterize DNA associations with human TFs using expression profiles, protein-protein interactions and recognition motifs. Our method predicts TF binding events with >0.
View Article and Find Full Text PDFBlood-cell-free circulating micro-RNAs (miRNAs) have been proposed as potential accessible biomarkers for neurodegenerative diseases such as Parkinson's disease (PD). Here we analyzed the serum levels of 377 miRNAs in a discovery set of 10 idiopathic Parkinson's disease (IPD) patients, 10 PD patients carriers of the LRRK2 G2019S mutation (LRRK2 PD), and 10 controls by using real-time quantitative PCR-based TaqMan MicroRNA arrays. We detected candidate differentially expressed miRNAs, which were further tested in a first validation set consisting of 20 IPD, 20 LRRK2 PD, and 20 control samples.
View Article and Find Full Text PDFBackground: RNA-binding proteins regulate a number of cellular processes, including synthesis, folding, translocation, assembly and clearance of RNAs. Recent studies have reported that an unexpectedly large number of proteins are able to interact with RNA, but the partners of many RNA-binding proteins are still uncharacterized.
Results: We combined prediction of ribonucleoprotein interactions, based on catRAPID calculations, with analysis of protein and RNA expression profiles from human tissues.
Alzheimer's disease (AD) is the most common neurodegenerative dementia. Approximately 10% of cases present at an age of onset before 65 years old, which in turn can be monogenic familial AD (FAD) or sporadic early-onset AD (sEOAD). Mutations in PSEN1, PSEN2, and APP genes have been linked with FAD.
View Article and Find Full Text PDFMutations in the leucine-rich repeat kinase 2 (LRRK2) and α-synuclein (SNCA) genes are known genetic causes of Parkinson's disease (PD). Recently, a genetic variant in SNCA has been associated with a lower age at onset in idiopathic PD (IPD). We genotyped the SNCA polymorphism rs356219 in 84 LRRK2-associated PD patients carrying the G2019S mutation.
View Article and Find Full Text PDFLRRK2 mutations are the most common genetic cause of Parkinson's disease (PD). We performed a whole-genome RNA profiling of locus coeruleus post-mortem tissue, a histopathologically affected brain tissue in PD, from idiopathic PD (IPD) and LRRK2-associated PD patients. The differentially expressed genes found in IPD and LRRK2-associated PD are involved in the gene ontology terms of synaptic transmission and neuron projection.
View Article and Find Full Text PDFLRRK2 mutations are the most common genetic cause of Parkinson's disease (PD). We performed a whole-genome RNA profiling of putamen tissue from idiopathic PD (IPD), LRRK2-associated PD (G2019S mutation), neurologically healthy controls and one asymptomatic LRRK2 mutation carrier, by using the Genechip Human Exon 1.0-ST Array.
View Article and Find Full Text PDF