Publications by authors named "Teresa Berninger"

Water-soluble polymers (WSPs) are a versatile group of chemicals used across industries for different purposes such as thickening, stabilizing, adhesion and gelation. Synthetic polymers have tailored characteristics and are chemically homogeneous, whereas plant-derived biopolymers vary more widely in their specifications and are chemically heterogeneous. Between both sources, microbial polysaccharides are an advantageous compromise.

View Article and Find Full Text PDF

Damages of the (agro)ecosystem by extensive use of chemical fertilizers and pesticides, the global dying of bee populations possibly linked to pesticide spraying, and stricter regulations for pesticide use together with successful use of microbials in IPM programs are pushing on the development and commercialization of new microbial products and a large and growing biostimulants and biocontrol market. This review focuses on microbial inoculants including bacteria, fungi, and viruses used as biostimulant or biocontrol agent for foliar application and covers all important steps from inoculant development to successful field application. Topics presented comprise typical spraying equipment including the importance of the spraying process and relating effects, furthermore formulation development including classification and adjuvants, and thirdly regulatory aspects as currently applied or under discussion.

View Article and Find Full Text PDF

Herein, a biosensor based on a reduced graphene oxide field effect transistor (rGO-FET) functionalized with the cascading enzymes arginase and urease was developed for the detection of L-arginine. Arginase and urease were immobilized on the rGO-FET sensing surface via electrostatic layer-by-layer assembly using polyethylenimine (PEI) as cationic building block. The signal transduction mechanism is based on the ability of the cascading enzymes to selectively perform chemical transformations and prompt local pH changes, that are sensitively detected by the rGO-FET.

View Article and Find Full Text PDF

The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria.

View Article and Find Full Text PDF

The microbial component of healthy seeds - the seed microbiome - appears to be inherited between plant generations and can dynamically influence germination, plant performance, and survival. As such, methods to optimize the seed microbiomes of major crops could have far-reaching implications for plant breeding and crop improvement to enhance agricultural food, feed, and fiber production. Here, we describe a new approach to modulate seed microbiomes of elite crop seed embryos and concomitantly design the traits to be mediated by seed microbiomes.

View Article and Find Full Text PDF

A range of lab-scale methods for encapsulation of plant growth-promoting bacteria in alginate beads intended for seed coating was evaluated: contact-spotting, extrusion through syringe with/without vibration, ejection by robotic liquid handler, extrusion by centrifugal force and commercial devices (nanodispenser, aerodynamically assisted jetting, encapsulator). Two methods were selected based on throughput (encapsulator: 1.5-5 mL/min; syringe with subsequent pulverisation: 5 mL/min).

View Article and Find Full Text PDF