Publications by authors named "Teresa A Garrett"

The lipidomes of Clostridium fallax and Clostridium cadaveris were studied using thin-layer chromatography (TLC) and normal phase liquid chromatography/mass spectrometry (NPLC/MS). Both species contain diradylglycerol (DRG), monohexosyldiradylglycerol (MHDRG), monohexosyl monoacylglycerol (MHMAG), phosphatidylglycerol (PtdGro), and phosphatidylethanolamine (PtdEtn). DRG, MHDRG, PtdEtn, and PtdGro are present in both diacyl and alk-1-enyl acyl (plasmalogen) forms.

View Article and Find Full Text PDF

Tau is a microtubule-associated protein found in neuronal axons that has several well-known functions, such as promoting microtubule polymerization, stabilizing microtubules against depolymerization, and spatially organizing microtubules in axons. Two contrasting models have been previously described to explain tau's ability to organize the spacing between microtubules: complementary dimerization of the projection domains of taus on adjacent microtubules or tau's projection domain acting as a polyelectrolyte brush. In this study, atomic force microscopy was used to interrogate intermolecular interactions between layers of tau protein immobilized on mica substrates and on silicon nitride atomic force microscope tips.

View Article and Find Full Text PDF

The Arabidopsis thaliana lysophospholipid acyltransferase At1g78690 acylates a variety of lysophospholipids such as lyso phosphatidylglycerol, lyso phosphatidylethanolamine and lyso phosphatidylserine. Despite di-acylate phosphatidylglycerol being a substrate, overexpression of At1g78690 in Escherichia coli leads to the accumulation of acyl-PG. Here we show that cardiolipin also accumulates in cells overexpressing At1g78690.

View Article and Find Full Text PDF

Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, Pah1 phosphatidate phosphatase, which catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol, plays a crucial role in the synthesis of the storage lipid triacylglycerol. This evolutionarily conserved enzyme also plays a negative regulatory role in controlling de novo membrane phospholipid synthesis through its consumption of phosphatidate. We found that the pah1Δ mutant was defective in the utilization of non-fermentable carbon sources but not in oxidative phosphorylation; the mutant did not exhibit major changes in oxygen consumption rate, mitochondrial membrane potential, F1F0-ATP synthase activity, or gross mitochondrial morphology.

View Article and Find Full Text PDF

The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs.

View Article and Find Full Text PDF

In traditional introductory biochemistry laboratory classes students learn techniques for protein purification and analysis by following provided, established, step-by-step procedures. Students are exposed to a variety of biochemical techniques but are often not developing procedures or collecting new, original data. In this laboratory module, students develop research skills through work on an original research project and gain confidence in their ability to design and execute an experiment while faculty can enhance their scholarly pursuits through the acquisition of original data in the classroom laboratory.

View Article and Find Full Text PDF

When the lysoglycerophospholipid (GPL) acyltransferase At1g78690 from Arabidopsis thaliana is over-expressed in Escherichiacoli a headgroup acylated GPL, acyl phosphatidylglycerol (PG), accumulates despite that in vitro this enzyme catalyzes the transfer of an acyl chain from acyl-CoA to the sn-2 position of 1-acyl phosphatidylethanolamine (PE) or 1-acyl PG to form the sn-1, sn-2, di acyl PE and PG respectively; it does not acylate PG to form acyl PG. To begin to understand why the overexpression of a lyso GPL acyltransferase leads to the accumulation of a headgroup acylated GPL in E. coli we investigated the headgroup specificity of At1g78690.

View Article and Find Full Text PDF

There are five distinct core structures in the lipopolysaccharides of Escherichia coli and at least two in Salmonella isolates, which vary principally in the outer core oligosaccharide. Six outer core glycosyltransferases, E. coli K-12 WaaG, WaaB, and WaaO and Salmonella typhimurium WaaI, WaaJ, and WaaK, were cloned, overexpressed, and purified.

View Article and Find Full Text PDF

Strains of Pseudomonas aeruginosa (PA) isolated from the airways of cystic fibrosis patients constitutively add palmitate to lipid A, the membrane anchor of lipopolysaccharide. The PhoPQ regulated enzyme PagP is responsible for the transfer of palmitate from outer membrane phospholipids to lipid A. This enzyme had previously been identified in many pathogenic Gram-negative bacteria, but in PA had remained elusive, despite abundant evidence that its lipid A contains palmitate.

View Article and Find Full Text PDF

Corals and other cnidarians house photosynthetic dinoflagellate symbionts within membrane-bound compartments inside gastrodermal cells. Nutritional interchanges between the partners produce carbohydrates and lipids for metabolism, growth, energy stores, and cellular structures. Although lipids play a central role in the both the energetics and the structural/morphological features of the symbiosis, previous research has primarily focused on the fatty acid and neutral lipid composition of the host and symbiont.

View Article and Find Full Text PDF

Chris Raetz passed away on August 16, 2011, still at the height of his productive years. His seminal contributions to biomedical research were in the genetics, biochemistry, and structural biology of phospholipid and lipid A biosynthesis in Escherichia coli and other gram-negative bacteria. He defined the catalytic properties and structures of many of the enzymes responsible for the "Raetz pathway for lipid A biosynthesis.

View Article and Find Full Text PDF

In this laboratory module, introductory biochemistry students are exposed to two-dimensional (1) H-nuclear magnetic resonance of glycerophospholipids (GPLs). Working in groups of three, students enzymatically synthesized and purified a variety of 2-acyl lyso GPLs. The structure of the 2-acyl lyso GPL was verified using (1) H-correlation spectroscopy.

View Article and Find Full Text PDF

Rationale: Cardiolipin (CL), a glycerophospholipid containing four acyl chains, is found in most organisms including Gram-negative bacteria such as Escherichia coli. While CL composes only a fraction of the total glycerophospholipids, the four acyl chains lead to a large number of possible molecular species as defined by the total number of carbons and unsaturations in the acyl chains. Understanding the molecular composition of CL, and how it changes under different growth conditions, will aid in understanding the complex role of CL in E.

View Article and Find Full Text PDF

The UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase, encoded by lpxA, catalyzes the first step of lipid A biosynthesis in Gram-negative bacteria, the (R)-3-hydroxyacyl-ACP-dependent acylation of the 3-OH group of UDP-GlcNAc. Recently, we demonstrated that the Arabidopsis thaliana orthologs of six enzymes of the bacterial lipid A pathway produce lipid A precursors with structures similar to those of Escherichia coli lipid A precursors [Li, C., et al.

View Article and Find Full Text PDF

Electrospray ionization mass spectrometry is a powerful technique to analyze lipid extracts especially for the identification of new lipid metabolites. A hurdle to lipid identification is the presence of solvent contaminants that hinder the identification of low abundance species or covalently modify abundant lipid species. We have identified several non-enzymatically derived minor lipid species in lipid extracts of Escherichia coli; phosphatidylmethanol, ethyl and methyl carbamates of PE and N-succinyl PE were identified in lipid extracts of E.

View Article and Find Full Text PDF

AT1G78690, a gene found in Arabidopsis thaliana, has been reported to encode a N-acyltransferase that transfers an acyl chain from acyl-CoA to the headgroup of phosphatidylethanolamine (PE) to form N-acylphosphatidylethanolamine (N-acyl-PE). Our investigation suggests that At1g78690p is not a PE-dependent N-acyltransferase but is instead a lysoglycerophospholipid O-acyltransferase. We overexpressed AT1G78690 in Escherichia coli, extracted the cellular lipids, and identified the accumulating glycerophospholipid as acylphosphatidylglycerol (acyl-PG).

View Article and Find Full Text PDF

We report the lipidomic response of the murine macrophage RAW cell line to Kdo(2)-lipid A, the active component of an inflammatory lipopolysaccharide functioning as a selective TLR4 agonist and compactin, a statin inhibitor of cholesterol biosynthesis. Analyses of lipid molecular species by dynamic quantitative mass spectrometry and concomitant transcriptomic measurements define the lipidome and demonstrate immediate responses in fatty acid metabolism represented by increases in eicosanoid synthesis and delayed responses characterized by sphingolipid and sterol biosynthesis. Lipid remodeling of glycerolipids, glycerophospholipids, and prenols also take place, indicating that activation of the innate immune system by inflammatory mediators leads to alterations in a majority of mammalian lipid categories, including unanticipated effects of a statin drug.

View Article and Find Full Text PDF

Advances in mass spectrometry have facilitated the identification of novel lipid structures. In this work, we fractionated the lipids of Escherichia coli B and analyzed the fractions using negative-ion electrospray ionization mass spectrometry to reveal unknown lipid structures. Analysis of a fraction eluting with high salt from DEAE cellulose revealed a series of ions not corresponding to any of the known lipids of E.

View Article and Find Full Text PDF

The pgsA null Escherichia coli strain, UE54, lacks the major anionic phospholipids phosphatidylglycerol and cardiolipin. Despite these alterations the strain exhibits relatively normal cell division. Analysis of the UE54 phospholipids using negativeion electrospray ionization mass spectrometry resulted in identification of a new anionic phospholipid, N-acylphosphatidylethanolamine.

View Article and Find Full Text PDF

Sec14, the major yeast phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein, regulates essential interfaces between lipid metabolism and membrane trafficking from the trans-Golgi network (TGN). How Sec14 does so remains unclear. We report that Sec14 binds PtdIns and PtdCho at distinct (but overlapping) sites, and both PtdIns- and PtdCho-binding activities are essential Sec14 activities.

View Article and Find Full Text PDF

Cardiolipin (CL), a tetra-acylated glycerophospholipid composed of two phosphatidyl moieties linked by a bridging glycerol, plays an important role in mitochondrial function in eukaryotic cells. Alterations to the content and acylation state of CL cause mitochondrial dysfunction and may be associated with pathologies such as ischemia, hypothyrodism, aging, and heart failure. The structure of CL is very complex because of microheterogeneity among its four acyl chains.

View Article and Find Full Text PDF

Prenols, a class of lipids formed by the condensation of five carbon isoprenoids, have important roles in numerous metabolic pathways of the eukaryotic cell. Prenols are found in the cell as free alcohols, such as dolichol, or can be attached to vitamins, as with the fat soluble vitamins. In addition, prenols such as farnesyl- and geranylgeranyl-diphosphate are substrates for the transfer of farnesyl and geranylgeranyl units to proteins with important implications for signal transduction within the cell.

View Article and Find Full Text PDF

Sec14p is the major phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein in the budding yeast Saccharomyces cerevisiae and is the founding member of a large eukaryotic protein superfamily. This protein catalyzes the exchange of either PtdIns or PtdCho between membrane bilayers in vitro and this exchange reaction requires no external input of energy or of other protein cofactors. Despite the previous elucidation of the crystal structure of a detergent-bound form of Sec14p, the conformational changes that accompany the phospholipid-exchange reaction remain undefined.

View Article and Find Full Text PDF

The lipid A and core regions of the lipopolysaccharide in Rhizobium leguminosarum, a nitrogen-fixing plant endosymbiont, are strikingly different from those of Escherichia coli. In R. leguminosarum lipopolysaccharide, the inner core is modified with three galacturonic acid (GalA) moieties, two on the distal 3-deoxy-D-manno-octulosonic acid (Kdo) unit and one on the mannose residue.

View Article and Find Full Text PDF