Publications by authors named "Teresa A Galvin"

The use of new cell substrates for the development of biologicals, particularly tumorigenic and tumor-derived cell lines, can pose a major regulatory challenge due to safety concerns related to the presence of novel viruses, latent and occult viruses including oncogenic viruses, and endogenous retroviruses, since these may not be detected by the currently recommended conventional assays. This report is a summary of our laboratory's experiences using advanced nucleic acid-based technologies to evaluate a Madin-Darby canine kidney (MDCK) cell line and the insect Sf9 cell line derived from Spodoptera frugiperda, and presents some ongoing efforts to address the challenges of novel virus detection.

View Article and Find Full Text PDF

Advanced nucleic acid-based technologies are powerful research tools for novel virus discovery but need to be standardized for broader applications such as virus detection in biological products and clinical samples. We have used well-characterized retrovirus stocks to evaluate the limit of detection (LOD) for broad-range PCR with electrospray ionization mass spectrometry (PCR/ESI-MS or PLEX-ID), RT-PCR assays, and virus microarrays. The results indicated that in the absence of background cellular nucleic acids, PLEX-ID and RT-PCR had a similar LOD for xenotropic murine retrovirus-related virus (XMRV; 3.

View Article and Find Full Text PDF

Unlabelled: The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes.

View Article and Find Full Text PDF

We have investigated the influence of naturally occurring simian foamy viruses (SFVs) on simian immunodeficiency virus (SIV) infection and disease in Indian rhesus macaques. Animals were divided into two groups based upon presence or absence of SFV; in each group, eight monkeys were injected with SIV(mac239) virus obtained from a molecular clone and four were injected with medium. Blood was collected every two weeks for evaluation of SIV infection based upon T cell-subsets, plasma viral load, development and persistence of virus-specific antibodies, and clinical changes by physical examination and hematology.

View Article and Find Full Text PDF

The full-length sequence of simian foamy virus serotype 2 (SFVmcy-2), isolated from a Taiwanese macaque, was determined. SFVmcy-2 was highly related to SFV serotype 1 (SFVmcy-1), an isolate from the same species, except in the putative receptor binding domain (RBD) in env, which contained novel sequences related to SFV serotype 3 (SFVagm-3), isolated from an African green monkey. The results identify a potential region of neutralization in SFVs and demonstrate recombination between genetically divergent foamy viruses.

View Article and Find Full Text PDF

The discovery of xenotropic murine leukemia virus-related virus (XMRV) in human tissue samples has been shown to be due to virus contamination with a recombinant murine retrovirus. However, due to the unknown pathogenicity of this novel retrovirus and its broad host range, including human cell lines, it is important to understand the modes of virus transmission and develop mitigation and management strategies to reduce the risk of human exposure and infection. XMRV transmission was evaluated by whole-blood transfusion in rhesus macaques.

View Article and Find Full Text PDF

Xenotropic murine leukemia virus-related virus (XMRV) was discovered in human prostate tumors and later in some chronic fatigue syndrome (CFS) patients. However, subsequent studies have identified various sources of potential contamination with XMRV and other murine leukemia virus (MLV)-related sequences in test samples. Biological and nucleotide sequence analysis indicates that XMRV is distinct from known xenotropic MLVs and has a broad host range and cell tropism including human cells.

View Article and Find Full Text PDF

Endogenous retroviral sequences are present in high copy numbers in the genomes of all species and may be expressed as RNAs; however, the majority are defective for virus production. Although virus has been isolated from various Old World monkey and New World monkey species, there has been no report of endogenous retroviruses produced from African green monkey (AGM) tissues or cell lines. We have recently developed a stepwise approach for evaluating the presence of latent viruses by chemical induction (Khan et al.

View Article and Find Full Text PDF

Human herpesvirus 8 (HHV-8) persists as episomal DNA in latently-infected cells and can establish two alternative life cycles, latent or lytic. 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is a known inducer of HHV-8 in several human primary effusion lymphoma cell lines and has been widely used for HHV-8 reactivation; however, induction conditions have differed, resulting in varying levels of virus expression. We have used HHV-8 latently-infected BC-3 cells as a model to determine critical parameters for optimizing virus reactivation by TPA.

View Article and Find Full Text PDF

The recent urgency to develop new vaccines for emerging and re-emerging diseases, such as pandemic influenza, has necessitated the use of cell substrates not previously used in the manufacture of licensed vaccines. A major safety concern in the use of novel cell substrates is the presence of potential adventitious agents, such as latent and occult viruses, that may not be detected by currently used conventional assays. In cases where the novel cell substrate is known to be tumorigenic, there are additional safety issues related to tumorigenicity of intact cells and oncogenicity of residual cellular DNA.

View Article and Find Full Text PDF