Publications by authors named "Terenzi F"

Article Synopsis
  • Oncogene amplification on extrachromosomal DNA (ecDNA) is linked to treatment resistance and poorer survival in cancer patients, particularly those with glioblastoma, contributing to genetic diversity in tumors.* ! -
  • The study used a new computational model called 'SPECIES' to analyze tumor samples from 94 glioblastoma patients, providing insights into how ecDNA evolves in time and space within tumors.* ! -
  • Findings reveal significant patterns in ecDNA copy number variation, indicating strong positive selection on certain oncogenes and suggesting that ecDNA accumulation occurs before major cell growth phases.* !
View Article and Find Full Text PDF

Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.

View Article and Find Full Text PDF

A 16-year-old boy was evaluated for a history of exercise-induced fatigability associated with nausea even after minimal effort, lower limbs muscle hypotrophy, and swelling of the masseter muscles after chewing. Laboratory tests were remarkable for hyperlactatemia and metabolic acidosis after short physical activity. The muscle biopsy showed non-specific mitochondrial alterations and an increase in intrafibral lipids.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2, the virus responsible for COVID-19, produces various subgenomic RNAs (sgRNAs) that play roles in viral gene expression, though their functions are not entirely understood.
  • Host agents like insulin and interferon-gamma, along with the virus's spike protein, enhance the expression of these sgRNAs by promoting the binding of a specific host protein complex to the viral RNA's 3'-end.
  • A newly identified RNA element (SPEAR) in the virus's 3'-end increases sgRNA activity and viral translation, presenting a potential therapeutic target to reduce SARS-CoV-2 levels effectively.
View Article and Find Full Text PDF

Introduction: A significant proportion of patients with Parkinson's disease (PD) display a set of impulsive-compulsive behaviors at some point during the course of illness. These behaviors range from the so-called behavioral addictions to dopamine dysregulation syndrome, punding and hoarding disorders. These behaviors have been consistently linked to the use of dopaminergic medications used to treat PD motor symptoms (dopamine agonists, levodopa, and other agents) and less consistently to neuromodulation techniques such as deep brain stimulation (DBS).

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG expansion greater than 35 triplets in the IT-15 gene, with a clinical onset usually in the forties. Late-onset form of HD is defined as disease onset after the age of 59 years. The aim of the present study is to investigate the clinical-demographic features of Late-onset HD population (LoHD) in comparison to Classic-onset patients (CoHD).

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (AARS) participate in decoding the genome by catalyzing conjugation of amino acids to their cognate tRNAs. During evolution, biochemical and environmental conditions markedly influenced the sequence and structure of the 20 AARSs, revealing adaptations dictating canonical and orthogonal activities. Here, we investigate the function of the appended Zn-binding domain (ZBD) in the bifunctional AARS, glutamyl-prolyl-tRNA synthetase (GluProRS).

View Article and Find Full Text PDF

Background: Impulsive-compulsive behaviors are common in Parkinson's disease (PD) patients. However, the basal ganglia dysfunctions associated with high impulsivity have not been fully characterized. The objective of this study was to identify the features associated with impulsive-compulsive behaviors in single neurons of the subthalamic nucleus (STN).

View Article and Find Full Text PDF

We reported the case of a John Cunningham virus (JCV) and human herpesvirus 6 (HHV-6) mediated progressive multifocal leukoencephalopathy (PML) after human stem cell transplant, reactivated 6 months later in absence of immunosuppressive therapy, successfully treated with anti-5HT2A receptors agents and antiviral therapy. Few cases of JCV and HHV-6 coinfection associated PML are described in literature and the role of HHV-6 in the pathogenesis and prognosis of PML is not completely clear. Our case suggests that, in a possible PML, the research of HHV-6 and JCV should be always performed on cerebrospinal fluid (CSF) and on blood samples and in case of detection of HHV-6 DNA a chromosomally integrated human herpesvirus 6(ciHHV-6) should be excluded.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a chronic neurodegenerative disorder, characterized by considerable clinical heterogeneity. Extracellular vesicles (EVs) were proposed as new biomarkers for PD because of their role as vehicles of multiple PD related molecules, but technical limitations exist in their detection and characterization in a clinical environment. We propose herein a Raman based protocol for the label-free analysis of circulating EVs as diagnostic and predictive tool for PD.

View Article and Find Full Text PDF

The interferon (IFN)-γ-activated inhibitor of translation (GAIT) system directs transcript-selective translational control of functionally related genes. In myeloid cells, IFN-γ induces formation of a multiprotein GAIT complex that binds structural GAIT elements in the 3'-untranslated regions (UTRs) of multiple inflammation-related mRNAs, including ceruloplasmin and VEGF-A, and represses their translation. The human GAIT complex is a heterotetramer containing glutamyl-prolyl tRNA synthetase (EPRS), NS1-associated protein 1 (NSAP1), ribosomal protein L13a (L13a), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

View Article and Find Full Text PDF

Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing.

View Article and Find Full Text PDF

S-nitrosylation is a ubiquitous protein modification emerging as a principal mechanism of nitric oxide (NO)-mediated signal transduction and cell function. S-nitrosylases can use NO synthase (NOS)-derived NO to modify selected cysteines in target proteins. Despite proteomic identification of over a thousand S-nitrosylated proteins, few S-nitrosylases have been identified.

View Article and Find Full Text PDF

Muscleblind-like (MBNL) proteins have been shown to regulate pre-mRNA alternative splicing, and MBNL1 has been implicated in regulating fetal-to-adult transitions in alternative splicing in the heart. MBNL1 is highly conserved, exhibiting more than 95% identity at the amino acid level between birds and mammals. To investigate MBNL1 expression during embryonic heart development, we examined MBNL1 transcript and protein expression in the embryonic chicken heart from the formation of the primitive heart tube through cardiac morphogenesis (embryonic days 1.

View Article and Find Full Text PDF

During the transition from juvenile to adult life, the heart undergoes programmed remodeling at the levels of transcription and alternative splicing. Members of the CUG-BP and ETR-3-like factor (CELF) family have been implicated in driving developmental transitions in alternative splicing of cardiac transcripts during maturation of the heart. Here, we investigated the timing of the requirement for CELF activity in the postnatal heart using a previously described transgenic mouse model (MHC-CELFDelta).

View Article and Find Full Text PDF

Type I interferon (IFN) inhibits, by an unknown mechanism, the replication of human papillomaviruses (HPV), which are major human pathogens, Here, we present evidence that P56 (a protein), the expression of which is strongly induced by IFN, double-stranded RNA and viruses, mediates the anti-HPV effect of IFN. Ectopic expression of P56 inhibited HPV DNA replication and its ablation in IFN-treated cells alleviated the inhibitory effect of IFN on HPV DNA replication. Protein-protein interaction and mutational analyses established that the antiviral effect of P56 was mediated by its direct interaction with the DNA replication origin-binding protein E1 of several strains of HPV, through the tetratricopeptide repeat 2 in the N-terminal region of P56 and the C-terminal region of E1.

View Article and Find Full Text PDF

The interferon-stimulated genes (ISGs) ISG56 and ISG54 are strongly induced in cultured cells by type I interferons (IFNs), viruses, and double-stranded RNA (dsRNA), which activate their transcription by various signaling pathways. Here we studied the stimulus-dependent induction of both genes in vivo. dsRNA, which is generated during virus infection, induced the expression of both genes in all organs examined.

View Article and Find Full Text PDF

The interferon (IFN)-stimulated genes (ISGs) ISG-49, ISG-54, and ISG-56 are highly responsive to viral infection, yet the regulation and function of these genes in vivo are unknown. We examined the simultaneous regulation of these ISGs in the brains of mice during infection with either lymphocytic choriomeningitis virus (LCMV) or West Nile virus (WNV). Expression of the ISG-49 and ISG-56 genes increased significantly during LCMV infection, being widespread and localized predominantly to common as well as distinct neuronal populations.

View Article and Find Full Text PDF

Human P54 and P56 proteins are tetratricopeptide proteins that are encoded by two closely related genes, ISG54 and ISG56. These genes are induced strongly but transiently when cells are treated with interferons or double-stranded RNA or infected with a variety of viruses. We observed that, although double-stranded RNA or Sendai virus infection induced the two genes with similar kinetics, their induction kinetics in response to interferon-beta were quite different.

View Article and Find Full Text PDF

Mammalian cells respond to virus infection or other viral stresses, such as double-stranded (ds) RNA and interferons (IFN), by robust and rapid induction of viral stress-inducible proteins. The induction and actions of one such protein, the human P56, have been extensively studied. However, little is known about the distantly related mouse proteins, MuP56 and MuP54.

View Article and Find Full Text PDF

Members of the p56 family of mammalian proteins are strongly induced in virus-infected cells and in cells treated with interferons or double-stranded RNA. Previously, we have reported that human p56 inhibits initiation of translation by binding to the "e" subunit of eukaryotic initiation factor 3 (eIF3) and subsequently interfering with the eIF3/eIF2.GTP.

View Article and Find Full Text PDF

The circadian organization of adrenal secretion was studied in 23 healthy elderly subjects, 23 elderly demented patients and 10 healthy young subjects, in order to investigate the relationships between the hypothalamic-pituitary-adrenal axis and some cerebral morphometric parameters. The cerebral morphometric analysis was performed in some subjects of the three groups by MRI. A significant increase in cortisol levels during evening and nighttime was found in both groups of the aged subjects.

View Article and Find Full Text PDF

Expression of transfected genes is shown to be suppressed by two intracellular enzymes, RNase L and protein kinase PKR, which function in interferon-treated cells to restrict viral replication. RNase L(-/-) or PKR(-/-) murine embryonic fibroblasts produced enhanced levels of protein from transfected genes compared with wild-type cells. Increased expression of exogenous genes in RNase L(-/-) cells correlated with elevated levels of mRNA and thus appeared to be due to enhanced mRNA stability.

View Article and Find Full Text PDF