Publications by authors named "Terentjev E"

This work aims to compare the capability of vibration attenuation by standard elastomeric polymers, and by the new anomalously damping nematic liquid crystal elastomer. We use the most mainstream materials in both categories, and design two testing platforms: the ASTM-standard constrained layer plate resonance geometry, and the attenuation of resonances in a commercial device (electric drill) where the damping polymers were inserted into the casing. In the standard plate resonance testing, we find that LCE outperforms all standard damping materials, moreover, it brings the vibrating plate into the overdamped condition, which is unique for a non-fluid dissipative system.

View Article and Find Full Text PDF

Nematic liquid crystal elastomers (LCEs) have anomalously high vibration damping, and it has been assumed that this is the cause of their anomalously high-pressure-sensitive adhesion (PSA). Here, we investigate the mechanism behind this enhanced PSA by first preparing thin adhesive tapes with LCE of varying cross-linking densities, characterizing their material and surface properties, and then studying the adhesion characteristics with a standard set of 90° peel, lap shear, and probe tack tests. The study confirms that the enhanced PSA is only present in (and due to) the nematic phase of the elastomer, and the strength of bonding takes over 24 h to fully reach its maximum value.

View Article and Find Full Text PDF

The effect of elastomeric damping pads, softening the collision of hard objects, is investigated comparing the reference silicone elastomer and the polydomain nematic liquid crystalline elastomer, which has a far superior internal dissipation mechanism. We specifically focus not just on the energy dissipation, but also on the momentum conservation and transfer during the collision, because the latter determines the force exerted on the target and/or the impactor-and it is the force that does the damage during the short time of an impact, while the energy might be dissipated on a much longer time scale. To better assess the momentum transfer, we compare the collision with a very heavy object and the collision with a comparable mass, when some of the impact momentum is retained in the target receding away from the collision.

View Article and Find Full Text PDF

Active fabrics, responding autonomously to environmental changes, are the "Holy Grail" of the development of smart textiles. Liquid crystal elastomers (LCEs) promise to be the base materials for large-stroke reversible actuation. The mechanical behavior of LCEs matches almost exactly the human muscle.

View Article and Find Full Text PDF

Cadherins mediate cell-cell adhesion and help the cell determine its shape and function. Here we study collective cadherin organization and interactions within cell-cell contact areas, and find the cadherin density at which a 'gas-liquid' phase transition occurs, when cadherin monomers begin to aggregate into dense clusters. We use a 2D lattice model of a cell-cell contact area, and coarse-grain to the continuous number density of cadherin to map the model onto the Cahn-Hilliard coarsening theory.

View Article and Find Full Text PDF

We describe the full rheology profile of vitrimers, from small deformation (linear) to large deformation (non-linear) viscoelastic behaviour, providing concise analytical expressions to assist the experimental data analysis, and also clarify the emerging insights and rheological concepts in the subject. We identify the elastic-plastic transition at a time scale comparable to the life-time of the exchangeable bonds in the vitrimer network, and propose a new method to deduce material parameters using the Master Curves. At large plastic creep, we describe the strain thinning when the material is subjected to a constant stress or force, and suggest another method to characterize the material parameters from the creep curves.

View Article and Find Full Text PDF

A massive carbon footprint is associated with the ubiquitous use of plastics and their afterlife. Greenhouse gas (GHG) emissions from plastics are rising and increasingly consuming the global "carbon budget". It is, hence, paramount to implement an effective strategy to reclaim postconsumer plastic as feedstock for technologically innovative materials.

View Article and Find Full Text PDF

The Michael addition 'click' chemistry was used to graft acrylate-terminated mesogenic groups onto the polysiloxane backbone polymer chain with thiol functional groups, with a constant 15% fraction of diacrylate reacting monomers as crosslinkers. Three different types of mesogens were used, and also their 50 : 50 mixtures, and in all cases we have obtained the smectic-A phase of the resulting liquid crystalline elastomer. Using X-ray diffraction, calorimetry and dynamic mechanical analysis, we investigated the relationship between the molecular structure of mesogenic side groups and the structure and properties of the elastomers.

View Article and Find Full Text PDF

Liquid-crystalline elastomers (LCEs) are frequently used in soft actuator development. However, applications are limited because LCEs are prone to mechanical failure when subjected to heavy loads and high temperatures during the working cycle. A mechanically tough LCE system offers larger work capacity and lower failure rate for the actuators.

View Article and Find Full Text PDF

To date, exchangeable liquid crystalline elastomers (xLCEs) have been mainly fabricated by combining conventional LCEs with additional exchangeable functional groups in their networks. While conventional LCEs are frequently made from commercially available aromatic-ester reacting mesogens or from mesogens based on a biphenyl core, such reacting monomers are not optimized to fabricating xLCEs whose bond-exchange reaction is fast and clean cut. Here, we develop a fast synthesis route to produce a new type of reactive mesogen based on an aromatic-imine structure that intrinsically enables a fast and stable bond-exchange reaction in the resulting imine-based xLCE.

View Article and Find Full Text PDF

Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrices (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3m).

View Article and Find Full Text PDF

Nematic liquid crystal elastomers (LCE) exhibit unique mechanical properties, placing them in a category distinct from other viscoelastic systems. One of their most celebrated properties is the 'soft elasticity', leading to a wide plateau of low, nearly-constant stress upon stretching, a characteristically slow stress relaxation, enhanced surface adhesion, and other remarkable effects. The dynamic soft response of LCE to shear deformations leads to the extremely large loss behaviour with the loss factor tanδ approaching unity over a wide temperature and frequency ranges, with clear implications for damping applications.

View Article and Find Full Text PDF

Thermoplastic polyolefins (TPOs) crosslinked by dynamic covalent bonds (TPOs) have the potential to be the most utilized class of polymer in the world, with applications ranging from household and automotive to biomedical devices and additive manufacturing. TPO combines the benefits of thermoplastics and thermosets in a "single material" and potentially avoids their shortcomings. Here, we describe a new two-stage reaction extrusion strategy of TPOs with a backbone consisting of inert C-C bonds (polypropylene, PP), and thiol-anhydride, to dynamically crosslink PP through thiol-thioester bond exchange.

View Article and Find Full Text PDF

Muscles sense internally generated and externally applied forces, responding to these in a coordinated hierarchical manner at different timescales. The center of the basic unit of the muscle, the sarcomeric M-band, is perfectly placed to sense the different types of load to which the muscle is subjected. In particular, the kinase domain of titin (TK) located at the M-band is a known candidate for mechanical signaling.

View Article and Find Full Text PDF

Liquid crystalline elastomers (LCEs) have been considered one of the most promising material concepts for artificial muscles. However, accomplishing actuation of LCEs requires macroscopic alignment of the liquid-crystalline orientation in the rubbery network, which imposes challenges in the materials chemistry and processing. A two-stage curing strategy has been the dominating approach during last three decades.

View Article and Find Full Text PDF

Epithelial, stem-cell derived organoids are ideal building blocks for tissue engineering, however, scalable and shape-controlled bio-assembly of epithelial organoids into larger and anatomical structures is yet to be achieved. Here, a robust organoid engineering approach, Multi-Organoid Patterning and Fusion (MOrPF), is presented to assemble individual airway organoids of different sizes into upscaled, scaffold-free airway tubes with predefined shapes. Multi-Organoid Aggregates (MOAs) undergo accelerated fusion in a matrix-depleted, free-floating environment, possess a continuous lumen, and maintain prescribed shapes without an exogenous scaffold interface.

View Article and Find Full Text PDF

Fibrous liquid crystalline elastomers (LCE) are an attractive variant of LCE-based actuators due to their small thickness, leading to faster response times to stimuli, as well as the increased mechanical strength. Fabrication of LCE fibers has been attempted by various research groups using electro-spinning or micro-fluidic techniques, without much success. Here we propose an alternative way to achieve single-step continuous spinning LCE fibers in a more scalable and robust way, based on a liquid-ink 3D printer.

View Article and Find Full Text PDF

This Review presents and discusses the current state of the art in "exchangeable liquid crystalline elastomers", that is, LCE materials utilizing dynamically cross-linked networks capable of reprocessing, reprogramming, and recycling. The focus here is on the chemistry and the specific reaction mechanisms that enable the dynamic bond exchange, of which there is a variety. We compare and contrast these different chemical mechanisms and the key properties of their resulting elastomers.

View Article and Find Full Text PDF

Nematic liquid crystal elastomers (N-LCE) exhibit intriguing mechanical properties, such as reversible actuation and soft elasticity, which manifests as a wide plateau of low nearly-constant stress upon stretching. N-LCE also have a characteristically slow stress relaxation, which sometimes prevents their shape recovery. To understand how the inherent nematic order retards and arrests the equilibration, here we examine hysteretic stress-strain characteristics in a series of specifically designed main-chain N-LCE, investigating both macroscopic mechanical properties and the microscopic nematic director distribution under applied strains.

View Article and Find Full Text PDF

Three-dimensional (3D) multi-cellular aggregates hold important applications in tissue engineering and in vitro biological modeling. Probing the intrinsic forces generated during the aggregation process, could open up new possibilities in advancing the discovery of tissue mechanics-based biomarkers. We use individually suspended, and tethered gelatin hydrogel microfibers to guide multicellular aggregation of brain cancer cells (glioblastoma cell line, U87), forming characteristic cancer 'ellipsoids'.

View Article and Find Full Text PDF

The eukaryotic cell develops organelles to sense and respond to the mechanical properties of its surroundings. These mechanosensing organelles aggregate into symmetry-breaking patterns to mediate cell motion and differentiation on substrate. The spreading of a cell plated onto a substrate is one of the simplest paradigms in which angular symmetry-breaking assemblies of mechanical sensors are seen to develop.

View Article and Find Full Text PDF

In liquid crystal elastomers (LCEs), the internal mechanical loss increases around the nematic-isotropic phase transition and remains high all through the nematic phase, originating from the internal orientational relaxation related to the so-called "soft elasticity". Because the viscoelastic dissipation of the materials affects their adhesion properties, the nematic-isotropic phase transition can cause dramatic changes in the adhesion strength. Although the phase transitions can generally be induced by heat, here, we demonstrate the light-driven transition in dynamic adhesion in dye-doped nematic LCE.

View Article and Find Full Text PDF

Glassy solids may undergo a fluidization (yielding) transition upon deformation whereby the material starts to flow plastically. It has been a matter of debate whether this process is controlled by a specific time scale, from among different competing relaxation/kinetic processes. Here, two constitutive models of cage relaxation are examined within the microscopic model of nonaffine elasto-plasticity.

View Article and Find Full Text PDF

Vitrimers, an important subset of dynamically crosslinked polymer networks, have many technological applications for their excellent properties, and the ability to be re-processed through plastic flow above the so-called vitrification temperature. We report a simple and efficient method of generating such adaptive crosslinked networks relying on transesterification for their bond exchange by utilising the 'click' chemistry of epoxy and thiols, which also has the advantage of a low glass transition temperature. We vary the chemical structure of thiol spacers to probe the effects of concentration and the local environment of ester groups on the macroscopic elastic-plastic transition.

View Article and Find Full Text PDF

Liquid crystalline elastomer networks cross-linked by dynamic covalent bonds (xLCE) have the ability to be (re)processed during the plastic flow. However, the current bond-exchange strategies that are used to induce plastic flow in xLCE lack the efficient method to control the elastic-plastic transition. Here we describe a straightforward method to manipulate the transition to plastic flow via the choice of catalyst in xLCE cross-linked by siloxane.

View Article and Find Full Text PDF