Publications by authors named "Terence Smith"

Background And Objectives: Ocrelizumab improved clinical and MRI measures of disease activity and progression in three phase 3 multiple sclerosis (MS) studies. Post hoc analyses demonstrated a correlation between the ocrelizumab serum concentration and the degree of blood B-cell depletion, and body weight was identified as the most influential covariate on ocrelizumab pharmacokinetics. The magnitude of ocrelizumab treatment benefit on disability progression was greater in lighter vs heavier patients.

View Article and Find Full Text PDF

The enteric nervous system in the large intestine generates two important patterns relating to motility: ) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and ) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively.

View Article and Find Full Text PDF

Serum response factor (SRF) transcriptionally regulates expression of contractile genes in smooth muscle cells (SMC). Lack or decrease of SRF is directly linked to a phenotypic change of SMC, leading to hypomotility of smooth muscle in the gastrointestinal (GI) tract. However, the molecular mechanism behind SRF-induced hypomotility in GI smooth muscle is largely unknown.

View Article and Find Full Text PDF

We discuss the role of multiple cell types involved in rhythmic motor patterns in the large intestine that include tonic inhibition of the muscle layers interrupted by rhythmic colonic migrating motor complexes (CMMCs) and secretomotor activity. We propose a model that assumes these motor patterns are dependent on myenteric descending 5-hydroxytryptamine (5-HT, serotonin) interneurons. Asynchronous firing in 5-HT neurons excite inhibitory motor neurons (IMNs) to generate tonic inhibition occurring between CMMCs.

View Article and Find Full Text PDF

Mitochondrial dysfunction connects metabolic disturbance with numerous pathologies, but the significance of mitochondrial activity in bone remains unclear. We have, therefore, characterized the skeletal phenotype in the Opa3 mouse model for Costeff syndrome, in which a missense mutation of the mitochondrial membrane protein, Opa3, impairs mitochondrial activity resulting in visual and metabolic dysfunction. Although widely expressed in the developing normal mouse head, Opa3 expression was restricted after E14.

View Article and Find Full Text PDF

Genetically encoded Ca(2+) indicators (GECIs) have been used extensively in many body systems to detect Ca(2+) transients associated with neuronal activity. Their adoption in enteric neurobiology has been slower, although they offer many advantages in terms of selectivity, signal-to-noise and non-invasiveness. Our aims were to utilize a number of cell-specific promoters to express the Ca(2+) indicator GCaMP3 in different classes of neurons and glia to determine their effectiveness in measuring activity in enteric neural networks during colonic motor behaviors.

View Article and Find Full Text PDF

Background: 'No evidence of disease activity' (NEDA), defined as absence of magnetic resonance imaging activity (T2 and/or gadolinium-enhanced T1 lesions), relapses and disability progression ('NEDA-3'), is used as a comprehensive measure of treatment response in relapsing multiple sclerosis (RMS), but is weighted towards inflammatory activity. Accelerated brain volume loss (BVL) occurs in RMS and is an objective measure of disease worsening and progression.

Objective: To assess the contribution of individual components of NEDA-3 and the impact of adding BVL to NEDA-3 ('NEDA-4') METHODS: We analysed data pooled from two placebo-controlled phase 3 fingolimod trials in RMS and assessed NEDA-4 using different annual BVL mean rate thresholds (0.

View Article and Find Full Text PDF

The colonic migrating motor complex (CMMC) is a critical neurally mediated rhythmic propulsive contraction observed in the large intestine of many mammals. It seems to be equivalent to the high amplitude propagating contractions (HAPCs) in humans. This review focuses on the probable neural mechanisms involved in producing the CMMC or HAPC, their likely de-pendence on mucosal and neuronal serotonin and pacemaker insterstitial cells of Cajal networks and how intrinsic neural re-flexes affect them.

View Article and Find Full Text PDF

Nipbl (Scc2) and Mau2 (Scc4) encode evolutionary conserved proteins that play a vital role for loading the cohesin complex onto chromosomes, thereby ensuring accurate chromosome segregation during cell division. While mutations in human NIPBL are known to cause the developmental disorder Cornelia de Lange syndrome, the functions of Nipbl and Mau2 in mammalian development are poorly defined. Here we generated conditional alleles for both genes in mice and show that neural crest cell-specific inactivation of Nipbl or Mau2 strongly affects craniofacial development.

View Article and Find Full Text PDF

Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for industrial control are challenging due to biofilm heterogeneity.

View Article and Find Full Text PDF

Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1(-/-) mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT.

View Article and Find Full Text PDF

The mechanisms underlying slow-transit constipation (STC) are unclear. In 50% of patients with STC, some form of outlet obstruction has been reported; also an elongated colon has been linked to patients with STC. Our aims were 1) to develop a murine model of STC induced by partial outlet obstruction and 2) to determine whether this leads to colonic elongation and, consequently, activation of the inhibitory "occult reflex," which may contribute to STC in humans.

View Article and Find Full Text PDF

Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types.

View Article and Find Full Text PDF

Enteric glia cells (EGCs) form a dense network around myenteric neurons in a ganglia and are likely to have not only a supportive role but may also regulate or be regulated by neural activity. Our aims were to determine if EGCs are activated during the colonic migrating motor complex (CMMC) in the isolated murine colon. Strips of longitudinal muscle were removed and Ca(2+) imaging (Fluo-4) used to study activity in EGCs within myenteric ganglia during CMMCs, followed by post hoc S100 staining to reveal EGCs.

View Article and Find Full Text PDF

AS (Apert syndrome) is a congenital disease composed of skeletal, visceral and neural abnormalities, caused by dominant-acting mutations in FGFR2 [FGF (fibroblast growth factor) receptor 2]. Multiple FGFR2 splice variants are generated through alternative splicing, including PTC (premature termination codon)-containing transcripts that are normally eliminated via the NMD (nonsense-mediated decay) pathway. We have discovered that a soluble truncated FGFR2 molecule encoded by a PTC-containing transcript is up-regulated and persists in tissues of an AS mouse model.

View Article and Find Full Text PDF

Colonic migrating motor complexes (CMMCs) are neurally mediated, cyclical contractile and electrical events, which typically propagate along the colon every 2-3 min in the mouse. We examined the interactions between myenteric neurons, interstitial cells of Cajal in the myenteric region (ICC-MY) and smooth muscle cells during CMMCs using Ca(2+) imaging. CMMCs occurred spontaneously or were evoked by stimulating the mucosa locally, or by brushing it at either end of the colon.

View Article and Find Full Text PDF

The colonic migrating motor complex (CMMC) is a rhythmically occurring neurally mediated motor pattern. Although the CMMC spontaneously propagates along an empty colon it is responsible for faecal pellet propulsion in the murine large bowel. Unlike the peristaltic reflex, the CMMC is an 'all or none' event that appears to be dependent upon Dogiel Type II/AH neurons for its regenerative slow propagation down the colon.

View Article and Find Full Text PDF

The colonic migrating motor complex (CMMC) is necessary for fecal pellet propulsion in the murine colon. We have previously shown that 5-hydroxytryptamine (5-HT) released from enterochromaffin cells activates 5-HT(3) receptors on the mucosal processes of myenteric Dogiel type II neurons to initiate the events underlying the CMMC. Our aims were to further investigate the roles of 5-HT(1A), 5-HT(3), and 5-HT(7) receptor subtypes in generating and propagating the CMMC using intracellular microelectrodes or tension recordings from the circular muscle (CM) in preparations with and without the mucosa.

View Article and Find Full Text PDF

Colonic migrating motor complexes (CMMCs) propel fecal contents and are altered in diseased states, including slow-transit constipation. However, the mechanisms underlying the CMMCs are controversial because it has been proposed that disinhibition (turning off of inhibitory neurotransmission) or excitatory nerve activity generate the CMMC. Therefore, our aims were to reexamine the mechanisms underlying the CMMC in the colon of wild-type and neuronal nitric oxide synthase (nNOS)(-/-) mice.

View Article and Find Full Text PDF

The spontaneous colonic migrating motor complex (CMMC) is a cyclical contractile and electrical event that is the primary motor pattern underlying fecal pellet propulsion along the murine colon. We have combined Ca(2+) imaging with immunohistochemistry to determine the role of different classes of myenteric neurons during the CMMC. Between CMMCs, myenteric neurons usually displayed ongoing but uncoordinated activity.

View Article and Find Full Text PDF

Background & Aims: In human and canine colon, both slow (slow waves, 2-8/min) and fast (myenteric potential oscillations [MPOs]; 16-20/min) electrical rhythms in the smooth muscle originate at the submucosal and myenteric borders, respectively. We used Ca(2+) imaging to investigate whether interstitial cells of Cajal (ICCs) at these borders generated distinct rhythms.

Methods: Segments of canine colon were pinned with submucosal or myenteric surface uppermost or cut in cross section.

View Article and Find Full Text PDF

Background & Aims: The colonic migrating motor complex (CMMC) is a motor pattern that regulates the movement of fecal matter through a rhythmic sequence of electrical activity and/or contractions along the large bowel. CMMCs have largely been studied in empty preparations; we investigated whether local reflexes generated by a fecal pellet modify the CMMC to initiate propulsive activity.

Methods: Recordings of CMMCs were made from the isolated murine large bowel, with or without a fecal pellet.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0ng5u5oeffa3nav8hhivt9bnht0rnelc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once