Publications by authors named "Terence Risby"

In contrast to blood and urine samples, breath is invisible and ubiquitous in the environment. Different precautions are now necessary beyond the usual 'Universal Precautions'. In the era of COVID-19, breath (especially the aerosol fraction) can no longer be considered as harmless in the clinic or laboratory.

View Article and Find Full Text PDF

Ammonia physiology is important to numerous disease states including urea cycle disorders and hepatic encephalopathy. However, many unknowns persist regarding the ammonia response to common and potentially significant physiologic influences, such as food. Our aim was to evaluate the dynamic range of ammonia in response to an oral protein challenge in healthy participants.

View Article and Find Full Text PDF

Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays.

View Article and Find Full Text PDF

This review focuses on oxidative stress and more specifically lipid peroxidation in cardiac surgery, one of the fundamental theories of perioperative complications. We present the molecular pathways leading to lipid peroxidation and integrate analytical methods that allow detection of lipid peroxidation markers in the fluid phase with those focusing on volatile compounds in exhaled breath. In order to explore the accumulated data in the literature, we present a systematic review of quantitative analysis of malondialdehyde, a widely used lipid peroxidation product at various stages of cardiac surgery.

View Article and Find Full Text PDF

Exhaled breath condensate (EBC) and associated exhaled breath aerosols (EBA) are valuable non-invasive biological media used for the quantification of biomarkers. EBC contains exhaled water vapor, soluble gas-phase (polar) organic compounds, ionic species, plus other species including semi- and non-volatile organic compounds, proteins, cell fragments, DNA, dissolved inorganic compounds, ions, and microbiota (bacteria and viruses) dissolved in the co-collected EBA. EBC is collected from subjects who breathe 'normally' through a chilled tube assembly for approximately 10 min and is then harvested into small vials for analysis.

View Article and Find Full Text PDF

Ethylene is a major plant hormone mediating developmental processes and stress responses to stimuli such as infection. We show here that ethylene is also produced during systemic inflammation in humans and is released in exhaled breath. Traces of ethylene were detected by laser spectroscopy both in vitro in isolated blood leukocytes exposed to bacterial lipopolysaccharide (LPS) as well as in vivo following LPS administration in healthy volunteers.

View Article and Find Full Text PDF

Blood ammonia is routinely used in clinical settings to assess systemic ammonia in hepatic encephalopathy and urea cycle disorders. Despite its drawbacks, blood measurement is often used as a comparator in breath studies because it is a standard clinical test. We sought to evaluate sources of measurement error and potential clinical utility of breath ammonia compared to blood ammonia.

View Article and Find Full Text PDF

Breath analysis has the potential to detect and monitor diseases as well as to reduce the corresponding medical costs while improving the quality of a patient's life. Herein, a portable prototype, consisting of a commercial breath sampler modified to work as a platform for solid-state gas sensors was developed. The sensor is placed close to the mouth (<10 cm) and minimizes the mouth-to-sensor path to avoid contamination and dilution of the target breath marker.

View Article and Find Full Text PDF

Quantifying changes in ammonia and ethanol in blood and body fluid assays in response to food is cumbersome. We used breath analysis of ammonia, ethanol, hydrogen (an accepted standard of gut transit) and acetone to investigate gastrointestinal physiology. In 30 healthy participants, we measured each metabolite serially over 6 h in control and high protein trials.

View Article and Find Full Text PDF

Breath ammonia has proven to be a difficult compound to measure accurately. The goal of this study was to evaluate the effects that the physiological intervention, exercise, had on the levels of breath ammonia. The effects of vigorous exercise (4000 m indoor row) in 13 participants were studied and increases in breath ammonia were observed in all participants.

View Article and Find Full Text PDF

Pulmonary and systemic organ injury produced by oxidative stress including lipid peroxidation is a fundamental tenet of ischemia-reperfusion injury, inflammatory response to cardiac surgery, and cardiopulmonary bypass (CPB) but is not routinely measured in a surgically relevant time frame. To initiate a paradigm shift toward noninvasive and real-time monitoring of endogenous lipid peroxidation, we have explored pulmonary excretion and dynamism of exhaled breath ethylene during cardiac surgery to test the hypothesis that surgical technique and ischemia-reperfusion triggers lipid peroxidation. We have employed laser photoacoustic spectroscopy to measure real-time trace concentrations of ethylene from the patient breath and from the CPB machine.

View Article and Find Full Text PDF

Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure.

View Article and Find Full Text PDF

This exhaled breath ammonia method uses a fast and highly sensitive spectroscopic method known as quartz enhanced photoacoustic spectroscopy (QEPAS) that uses a quantum cascade based laser. The monitor is coupled to a sampler that measures mouth pressure and carbon dioxide. The system is temperature controlled and specifically designed to address the reactivity of this compound.

View Article and Find Full Text PDF

Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces.

View Article and Find Full Text PDF

Amongst volatile compounds (VCs) present in exhaled breath, ammonia has held great promise and yet it has confounded researchers due to its inherent reactivity. Herein we have evaluated various factors in both breath instrumentation and the breath collection process in an effort to reduce variability. We found that the temperature of breath sampler and breath sensor, mouth rinse pH, and mode of breathing to be important factors.

View Article and Find Full Text PDF

This report proposes a potentially sensitive and simple physiological method to detect early changes and to follow disease progression in obstructive pulmonary disease (COPD) based upon the usual pulmonary function test. Pulmonary function testing is a simple, although relatively insensitive, method to detect and follow COPD. As a proof-of-concept, we have examined the slope of the plateau for carbon dioxide during forced expiratory capnography in healthy (n = 10) and COPD subjects (n = 10).

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic (anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous have been proposed to be useful as preclinical biomarkers of various undiagnosed diseases including lung cancer, breast cancer, and cardio-pulmonary disease. The usual approach is to develop difference algorithms comparing VOC profiles from nominally healthy controls to cohorts of patients presenting with a documented disease, and then to apply the resulting rules to breath profiles of subjects with unknown disease status.

View Article and Find Full Text PDF