Publications by authors named "Terence G Langdon"

Heterostructured materials afford a new way to improve the mechanical properties, which has become vital in both materials science and engineering applications. In the present research, Cu/Nb multilayer composites with layer thicknesses from the micrometer to nanometer were fabricated by accumulative roll bonding and the microstructure and mechanical properties of the Cu/Nb multilayer composites were then investigated. The yield strength and ultimate tensile strength of these composites increase with decreasing layer thickness.

View Article and Find Full Text PDF

There has been a great interest in evaluating the potential of severe plastic deformation (SPD) to improve the performance of magnesium for biological applications. However, different properties and trends, including some contradictions, have been reported. The present study critically reviews the structural features, mechanical properties, corrosion behavior and biological response of magnesium and its alloys processed by SPD, with an emphasis on equal-channel angular pressing (ECAP) and high-pressure torsion (HPT).

View Article and Find Full Text PDF

A stable {[Formula: see text]}  <110>  single component sharp texture was obtained during ambient temperature tube High-Pressure Shearing (t-HPS) of 99.999% purity aluminum. It is shown that the grain size and the grain aspect ratio saturate at ~ 8 μm and ~ 1.

View Article and Find Full Text PDF

Nanostructuring of bulk metals is now well documented with the development of severe plastic deformation (SPD) for improving the physical and mechanical properties of engineering materials. Processing by high-pressure torsion (HPT), which was developed initially as a grain refinement technique, was extended recently to the mechanical bonding of dissimilar metals during nanostrcturing which generally involves significant microstructural heterogeneity. Here we introduce, for the first time, a bulk metastable Al-Mg supersaturated solid solution by the diffusion bonding of separate Al and Mg metal solids at room temperature using HPT.

View Article and Find Full Text PDF

Hydroxyapatite and bioactive glass particles were added to pure magnesium and an AZ91 magnesium alloy and then consolidated into disc-shaped samples at room temperature using high-pressure torsion (HPT). The bioactive particles appeared well-dispersed in the metal matrix after multiple turns of HPT. Full consolidation was attained using pure magnesium, but the center of the AZ91 disc failed to fully consolidate even after 50 turns.

View Article and Find Full Text PDF

High-pressure torsion (HPT) processing was applied to cast pure magnesium, and the effects of the deformation on the microstructure, hardness, tensile properties and corrosion resistance were evaluated. The microstructures of the processed samples were examined by electron backscatter diffraction, and the mechanical properties were determined by Vickers hardness and tensile testing. The corrosion resistance was studied using electrochemical impedance spectroscopy in a 3.

View Article and Find Full Text PDF
Article Synopsis
  • Synchrotron X-ray microbeam diffraction was utilized to analyze elastic strain and stress in low dislocation density areas of ECAP AA1050 after varying passes (1, 2, and 8), marking a first for measuring these full tensors in plastically deformed metals at such a small scale.
  • The study builds on prior research by providing a more comprehensive look at long-range internal stresses in multiple directions, finding that the strain alignment changes from the pressing direction to a more random orientation as the number of passes increases.
  • Results indicate that as the number of ECAP passes increases, the internal stresses and strains tend to become more isotropic, with average maximum long-range internal stresses measured as -0.43 σ for
View Article and Find Full Text PDF

A commercial purity (CP) Grade 2 Ti was processed by high-pressure torsion (HPT) using an imposed pressure of 3.0GPa at room temperature. The HPT processing reduced the grain size from ∼8.

View Article and Find Full Text PDF

The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 °C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries.

View Article and Find Full Text PDF