Publications by authors named "Terence G Henares"

Understanding the interaction of proteins at interfaces, which occurs at or within cell membranes and lipoprotein vesicles, is central to our understanding of protein function. Therefore, new experimental approaches to understand how protein structure is influenced by protein-interface interactions are important. Herein we build on our previous work exploring electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) to investigate changes in protein secondary structure that are modulated by protein-interface interactions.

View Article and Find Full Text PDF

We present a new electrochemical system that combines paper-based sensing and ion-transfer voltammetry, bringing the latter a step closer toward point-of-care applications. Studies at the interface between two immiscible electrolyte solutions (ITIES) are often performed to detect redox-inactive species; unfortunately, due to the inherent instability of the interface, it is rather poorly explored outside specialized laboratories. Here, we address this limitation by combining a pen-like device containing the gelled organic phase with a paper-supported aqueous phase.

View Article and Find Full Text PDF

On the example of a colorimetric sodium assay, this work demonstrates the implementation of a classical cation-exchange optode relying on an ionophore-doped plasticized PVC membrane into a paper-based analytical device (PAD). An ion-selective optode (ISO) system has been arranged into a vertically-assembled PAD (vPAD) integrating a pH-buffering function. Capillary force-driven sample liquid transportation through the paper matrix enabled pH-adjustment prior to the optical detection of the analyte cation.

View Article and Find Full Text PDF

This work demonstrates the fabrication of microfluidic paper-based analytical devices (µPADs) suitable for the analysis of sub-microliter sample volumes. The wax-printing approach widely used for the patterning of paper substrates has been adapted to obtain high-resolution microfluidic structures patterned in filter paper. This has been achieved by replacing the hot plate heating method conventionally used to melt printed wax features into paper by simple hot lamination.

View Article and Find Full Text PDF

A single-step, easy-to-use, and fast capillary-type immunoassay device composed of a polyethylene glycol (PEG) coating containing two kinds of antibody-reagents, including an antibody-graphene oxide conjugate and fluorescently labelled antibody, was developed in this study. The working principle involved the spontaneous dissolution of the PEG coating, diffusion of reagents, and subsequent immunoreaction, triggered by the capillary action-mediated introduction of a sample solution. In a sample solution containing the target antigen, two types of antibody reagents form a sandwich-type antigen-antibody complex and fluorescence quenching takes place via fluorescence resonance energy transfer between the labelled fluorescent molecules and graphene oxide.

View Article and Find Full Text PDF

"Distance-based" detection motifs on microfluidic paper-based analytical devices (μPADs) allow quantitative analysis without using signal readout instruments in a similar manner to classical analogue thermometers. To realize a cost-effective and calibration-free distance-based assay of lactoferrin in human tear fluid on a μPAD not relying on antibodies or enzymes, we investigated the fluidic mobilities of the target protein and Tb(3+) cations used as the fluorescent detection reagent on surface-modified cellulosic filter papers. Chromatographic elution experiments in a tear-like sample matrix containing electrolytes and proteins revealed a collapse of attractive electrostatic interactions between lactoferrin or Tb(3+) and the cellulosic substrate, which was overcome by the modification of the paper surface with the sulfated polysaccharide ι-carrageenan.

View Article and Find Full Text PDF

Rapid, precise, and reproducible deposition of a broad variety of functional materials, including analytical assay reagents and biomolecules, has made inkjet printing an effective tool for the fabrication of microanalytical devices. A ubiquitous office device as simple as a standard desktop printer with its multiple ink cartridges can be used for this purpose. This Review discusses the combination of inkjet printing technology with paper as a printing substrate for the fabrication of microfluidic paper-based analytical devices (μPADs), which have developed into a fast-growing new field in analytical chemistry.

View Article and Find Full Text PDF

A single-step, easy-to-use enzyme immunoassay capillary sensor, composed of functional multilayer coatings, was developed in this study. The coatings were composed of substrate-immobilized hydrophobic coating, hydrogel coating, and soluble coating containing an enzyme-labeled antibody. The response mechanism involved a spontaneous immunoreaction triggered by capillary action-mediated introduction of a sample antigen solution and subsequent separation of unreacted enzyme-labeled antibodies and antigen-enzyme-labeled antibody complexes by the molecular sieving effect of the hydrogel.

View Article and Find Full Text PDF

This review describes advancements toward the development of a capillary-assembled microchip (CAs-CHIP) for simultaneous multiple analyte sensing and microchip capillary electrophoresis. Development of such an advanced system relies on several factors such as improving the fluid handling technique, creating new biosensing mechanisms, and integrating different functional capillaries into a single CAs-CHIP system. Furthermore, we provide an overview of various functional capillaries that have been established for valving and biosensing applications such as ions, metabolites, proteins, and enzyme activities.

View Article and Find Full Text PDF

A combination of an enzyme-labeled antibody release coating and a novel fluorescent enzyme substrate-copolymerized hydrogel in a microchannel for a single-step, no-wash microfluidic immunoassay is demonstrated. This hydrogel discriminates the free enzyme-conjugated antibody from an antigen-enzyme-conjugated antibody immunocomplex based on the difference in molecular size. A selective and sensitive immunoassay, with 10-1000 ng mL(-1) linear range, is reported.

View Article and Find Full Text PDF

In this study, a highly sensitive capillary-based enzyme-linked immunosorbent assay (ELISA) has been developed for the analysis of picomolar levels of thrombin-cleaved osteopontin (trOPN), a potential biomarker for ischemic stroke, in human plasma. Using a square capillary coated with 8.5 μg/ml anti-human trOPN capture antibody for ELISA, the linear range obtained was 2 to 16 pM trOPN antigen.

View Article and Find Full Text PDF

This paper presents a novel rhodamine diphosphate molecule that allows highly sensitive detection of proteins by employing sequential enzyme-linked immunosorbent assay and capillary isoelectric focusing (ELISA-cIEF). Seven-fold improvement in the immunoassay sensitivity and a 1-2 order of magnitude lower detection limit has been demonstrated by taking advantage of the combination of the enzyme-based signal amplification of ELISA and the concentration of enzyme reaction products by cIEF.

View Article and Find Full Text PDF

The conventional neuraminidase inhibitor assay requiring complicated step-by-step operations was successfully integrated into a "single step" operation using a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor. In the conventional neuraminidase inhibitor assay, complicated step-by-step operations including initial reaction of an inhibitor and an enzyme, and subsequent reaction with a fluorescent substrate are necessary. Furthermore, optimal pH conditions for the enzymatic reaction differ from those of fluorescence detection.

View Article and Find Full Text PDF

To enhance sensitivity and facilitate easy sample introduction into a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor array, PDMS was modified in bulk and on its surface to prepare "black" PDMS coated with a silver layer and self-assembled monolayer (SAM). India ink, a traditional Japanese black ink, was added to the PDMS pre-polymer for bulk modification. The surface was modified by a silver mirror reaction followed by SAM formation using cysteine.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a square glass capillary immunosensor for ELISA that simplifies the procedure and reduces reagent use by using covalently immobilized capture antibodies and physically adsorbed enzyme-linked antibodies.
  • The capture antibodies are attached using chemical treatments, while enzyme-linked antibodies are adsorbed with the help of polyethylene glycol.
  • The sensor allows for quick detection of human IgG with high precision and specificity, providing a quantitative analysis range of 10-5000 ng/mL anti-human IgG.
View Article and Find Full Text PDF
Article Synopsis
  • - The new combinable poly(dimethyl siloxane) (PDMS) capillary (CPC) sensor simplifies enzyme inhibitor assays by allowing a single-step process where the sample solution initiates a reaction that produces a fluorescence response, making it faster and easier to conduct tests.
  • - The CPC consists of two interlocking PDMS sticks with different coatings that enable the immobilization of reactive reagents like enzymes and substrates, overcoming challenges faced with traditional capillary methods.
  • - By arranging multiple CPCs, the method allows for simultaneous testing of different samples, showcasing its versatility through a successful assay of a protease inhibitor using two independent CPCs.
View Article and Find Full Text PDF

This report describes the fabrication and characterization of a simple and disposable capillary isoelectric focusing (cIEF) device containing a reagent-release capillary (RRC) array and poly(dimethylsiloxane) (PDMS) platform, which allows rapid (within 10 min) screening of cIEF conditions by introducing a sample solution into plural RRCs by capillary action followed by electric field application. To prepare the RRC, covalent immobilization of poly(dimethylacrylamide) (PDMA) was conducted to suppress electro-osmotic flow (EOF), followed by physical adsorption of the mixture of carrier ampholyte (CA), surfactant, labeling reagent (LR), and other additives to the PDMA surface to construct a two-layer structure inside a square glass capillary. When the sample solution containing proteins was introduced into the RRC, physically adsorbed CA, surfactant, and LR can be dissolved and released into the sample solution.

View Article and Find Full Text PDF

A simple capillary enzymatic biosensor was developed. This was prepared by simply coating a dissolvable membrane containing enzyme/s on the inner wall of a square glass capillary. An easy measurement was carried out by capillary force sample introduction with concurrent enzyme release and a reaction with a certain substrate.

View Article and Find Full Text PDF

Single-drop analysis of two different real sample solutions (2 microL) while simultaneously monitoring the activity of two sets of ten different proteases on a single microfluidic device is presented. The device, called a capillary-assembled microchip (CAs-CHIP), is fabricated by embedding square glass sensing capillaries (reagent-release capillaries, RRC) in the polydimethylsiloxane (PDMS) lattice microchannel, and used for that purpose. First, the performance reliability was evaluated by measuring the fluorescence response of twenty caspase-3-sensing capillaries on a single CAs-CHIP, and a relative standard deviation of 1.

View Article and Find Full Text PDF

This review accounts for the current development in microfluidic immunosensing chips. The basic knowledge of immunoassay in relation to its microfluidic material substrate, fluid handling and detection mode are briefly discussed. Here, we mainly focused on the surface modification, antibody immobilization, detection, signal enhancement and multiple analyte sensing.

View Article and Find Full Text PDF

The experimental conditions of the sample delivery inside the reagent-release capillary-based capillary-assembled microchip (RRC-based CAs-CHIP) were optimized and the reagent release procedure in the RRC is discussed. Recently, our group introduced the basic concept of the "drop-and-sip" fluid handling technique (Anal. Chem.

View Article and Find Full Text PDF
Article Synopsis
  • A new multiple enzyme linked immunosorbent assay (ELISA) chip was created using a capillary-assembled microchip (CAs-CHIP) technique, which allows for flexible designs for various diagnostic applications.
  • This chip integrates valving mechanisms for improved reliability, employing thermo-responsive polymers and Peltier devices for precise control of fluid flow during immuno-reactions.
  • The system effectively detects low concentrations of antibodies (down to 0.1 ng mL(-1)) with a total analysis time of about 30 minutes, making it versatile for different clinical diagnostic needs.
View Article and Find Full Text PDF

A general and simple implementation of simultaneous multiparametric sensing in a single microchip is presented by using a capillary-assembled microchip (CAs-CHIP) integrated with the plural different reagent-release capillaries (RRCs), acting as various biochemical sensors. A novel "drop-and-sip" technique of fluid handling is performed with a microliter droplet of a model sample solution containing proteases (trypsin, chymotrypsin, thrombin, elastase) and divalent cations (Ca2+, Zn2+, Mg2+) that passes through the microchannel with the aid of a micropipette as a vacuum pump, concurrently filling each RRC via capillary force. To avert the evaporation of the nanoliter sample volume in each capillary, PDMS oil is dropped on the outlet hole of the CAs-CHIP exploiting the capillary force that results in spontaneous sealing of all the RRCs.

View Article and Find Full Text PDF