Demand for high quality Basmati rice has increased significantly in the last decade. This commodity is highly vulnerable to fraud, especially in the post COVID-19 era. A unique two-tiered analytical system comprised of rapid on-site screening of samples using handheld portable Near-infrared NIR and laboratory confirmatory technique using a Head space gas chromatography mass spectrometry (HS-GC-MS) strategy for untargeted analysis was developed.
View Article and Find Full Text PDFBackground: Rice is an important staple food that is consumed around the world. Like many foods, the price of rice varies considerably, from very inexpensive for a low-quality product to premium pricing for highly prized varieties from specific locations. Therefore, like other foods it is vulnerable to economically motivated adulteration through substitution or misrepresentation of inferior-quality rice for more expensive varieties.
View Article and Find Full Text PDFRice is one of the most important cereals for human nutrition and is a basic staple food for half of the global population. The assessment of rice geographical origins in terms of its authenticity is of great interest to protect consumers from misleading information and fraud. In the present study, a head space gas chromatography mass spectrometry (HS-GC-MS) strategy for characterising volatile organic compounds (VOCs) profiles to distinguish rice samples from China, India and Vietnam is described.
View Article and Find Full Text PDFUnregulated growth promoter use in food-producing animals is an issue of concern both from food safety and animal welfare perspectives. However, the monitoring of such practices is analytically challenging due to the concerted actions of users to evade detection. Techniques based on the monitoring of biological responses to exogenous administrations have been proposed as more sensitive methods to identify treated animals.
View Article and Find Full Text PDF