Human immunodeficiency virus type 1 (HIV-1) recombination occurs during reverse transcription when parts of the two co-packaged RNAs are used as templates for DNA synthesis. It was previously hypothesized that HIV-1 Gag polyproteins preferentially encapsidate the RNA from which they were translated (cis-packaging hypothesis). This hypothesis implies that mutants encoding Gag that cannot efficiently package viral RNA are selected against at two levels: these mutants do not generate infectious virus, and these mutants are not efficiently rescued by the wild-type virus because the mutant RNAs are packaged at much lower levels than are those of the wild-type genome.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) exhibits a high level of genetic variation generated by frequent mutation and genetic recombination during reverse transcription. We have measured HIV-1 recombination rates in T cells in one round of virus replication. It was recently proposed that HIV-1 recombines far more frequently in macrophages than in T cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2005
Genetic recombination increases diversity in HIV-1 populations, thereby allowing variants to escape from host immunity or antiviral therapies. In addition to the currently described nine subtypes of HIV-1, many of the circulating strains are intersubtype recombinants. In this study, we determined the recombination rate between two HIV-1 subtype C viruses and between a subtype B virus and a subtype C virus during a single round of virus replication.
View Article and Find Full Text PDFRecombination is a major mechanism that generates variation in populations of human immunodeficiency virus type 1 (HIV-1). Mutations that confer replication advantages, such as drug resistance, often cluster within regions of the HIV-1 genome. To explore how efficiently HIV-1 can assort markers separated by short distances, we developed a flow cytometry-based system to study recombination.
View Article and Find Full Text PDFWe have identified a region near the C terminus of capsid (CA) of murine leukemia virus (MLV) that contains many charged residues. This motif is conserved in various lengths in most MLV-like viruses. One exception is that spleen necrosis virus (SNV) does not contain a well-defined domain of charged residues.
View Article and Find Full Text PDF