Publications by authors named "Tere M Williams"

Foxp3CD4 regulatory T (T) cells are essential for preventing fatal autoimmunity and safeguard immune homeostasis in vivo. While expression of the transcription factor Foxp3 and IL-2 signals are both required for the development and function of T cells, the commitment to the T cell lineage occurs during thymic selection upon T cell receptor (TCR) triggering, and precedes the expression of Foxp3. Whether signals beside TCR contribute to establish T cell epigenetic and functional identity is still unknown.

View Article and Find Full Text PDF

Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) elicits the immediate production of proinflammatory cytokines which participate in regulating the immune response. While the mechanisms of adaptive immunity in secondary injury are well characterized, the role of the innate response is unclear. Recently, the NLR inflammasome has been shown to become activated following TBI, causing processing and release of interleukin-1β (IL-1β).

View Article and Find Full Text PDF

Recent findings have revealed roles for systemic and mucosa-resident memory CD8(+) T cells in the orchestration of innate immune responses critical to host defense upon microbial infection. Here we integrate these findings into the current understanding of the molecular and cellular signals controlling memory CD8(+) T cell reactivation and the mechanisms by which these cells mediate effective protection in vivo. The picture that emerges presents memory CD8(+) T cells as early sensors of danger signals, mediating protective immunity both through licensing of cellular effectors of the innate immune system and via the canonical functions associated with memory T cells.

View Article and Find Full Text PDF

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are a diverse family of pattern recognition receptors that are essential mediators of inflammation and host defense in the gastrointestinal system. Recent studies have identified a subgroup of inflammasome forming NLRs that modulate the mucosal immune response during inflammatory bowel disease (IBD) and colitis associated tumorigenesis. To better elucidate the contribution of NLR family members in IBD and cancer, we conducted a retrospective analysis of gene expression metadata from human patients.

View Article and Find Full Text PDF

Nucleotide-binding domain and leucine-rich repeat containing protein inflammasome formation plays an essential role in modulating immune system homeostasis in the gut. Recently, a caspase-11 noncanonical inflammasome has been characterized and appears to modulate many biological functions that were previously considered to be solely dependent on caspase-1 and the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome during inflammatory bowel disease, experimental colitis was induced in wild-type and Casp11(-/-) mice utilizing dextran sulfate sodium (DSS).

View Article and Find Full Text PDF