Hydrogen sulfide removal from biogas was studied under anoxic conditions in a pilot-scale biotrickling filter operated under counter- and co-current gas-liquid flow patterns. The best performance was found under counter-current conditions (maximum elimination capacity of 140 gS m(-3) h(-1)). Nevertheless, switching conditions between co- and counter-current flow lead to a favorable redistribution of biomass and elemental sulfur along the bed height.
View Article and Find Full Text PDFTo explore the changes in the microbial community structure during the recovery process of an anammox reactor after a temperature shock, the 454-pyrosequencing technique was used. The temperature shock reduced the nitrogen removal rate up to 92% compared to that just before the temperature shock, and it took 70 days to recover a similar nitrogen removal rate to that before the temperature shock (ca. 0.
View Article and Find Full Text PDFBiotrickling filters for biogas desulfurization still must prove their stability and robustness in the long run under extreme conditions. Long-term desulfurization of high loads of H2S under acidic pH was studied in a lab-scale aerobic biotrickling filter packed with metallic Pall rings. Reference operating conditions at steady-state corresponded to an empty bed residence time (EBRT) of 130s, H2S loading rate of 52gS-H2Sm(-3)h(-1) and pH 2.
View Article and Find Full Text PDFPall rings, a common random packing material, were used in the biotrickling filtration of biogas with high H2S. Assessment of 600d of operation covered the reactor start-up, the operation at neutral pH and the transition from neutral to acid pH. During the start-up period, operational parameters such as the aeration rate and the trickling liquid velocity were optimized.
View Article and Find Full Text PDF