Flexible imagers are currently under intensive development as versatile optical sensor arrays, designed to capture images of surfaces and internals, irrespective of their shape. A significant challenge in developing flexible imagers is extending their detection capabilities to encompass a broad spectrum of infrared light, particularly terahertz (THz) light at room temperature. This advancement is crucial for thermal and biochemical applications.
View Article and Find Full Text PDFThe integration of flexible electronics with optics can help realize a powerful tool that facilitates the creation of a smart society wherein internal evaluations can be easily performed nondestructively from the surface of various objects that is used or encountered in daily lives. Here, organic-material-based stretchable optical sensors and imagers that possess both bending capability and rubber-like elasticity are reviewed. The latest trends in nondestructive evaluation equipment that enable simple on-site evaluations of health conditions and abnormalities are discussed without subjecting the targeted living bodies and various objects to mechanical stress.
View Article and Find Full Text PDFOptical transparency is highly desirable in bioelectronic sensors because it enables multimodal optical assessment during electronic sensing. Ultrathin (<5 µm) organic electrochemical transistors (OECTs) can be potentially used as a highly efficient bioelectronic transducer because they demonstrate high transconductance during low-voltage operation and close conformability to biological tissues. However, the fabrication of fully transparent ultrathin OECTs remains a challenge owing to the harsh etching processes of nanomaterials.
View Article and Find Full Text PDFChemical monitoring communicates diverse environmental information from industrial and biological processes. However, promising and sustainable systems and associated inspection devices that dynamically enable on-site quality monitoring of target chemicals confined inside transformable and opaque channels are yet to be investigated. This paper designs stretchable photo-sensor patch sheets for nonsampling, source-free, and label-free on-site dynamic chemical monitoring of liquids flowing inside soft tubes via simple deformable surface wrapping.
View Article and Find Full Text PDFFlexible electronics have gained considerable attention for application in wearable devices. Organic transistors are potential candidates to develop flexible integrated circuits (ICs). A primary technique for maximizing their reliability, gain, and operation speed is the modulation of charge-carrier behavior in the respective transistors fabricated on the same substrate.
View Article and Find Full Text PDFEnergy autonomy and conformability are essential elements in the next generation of wearable and flexible electronics for healthcare, robotics and cyber-physical systems. This study presents ferroelectric polymer transducers and organic diodes for imperceptible sensing and energy harvesting systems, which are integrated on ultrathin (1-µm) substrates, thus imparting them with excellent flexibility. Simulations show that the sensitivity of ultraflexible ferroelectric polymer transducers is strongly enhanced by using an ultrathin substrate, which allows the mounting on 3D-shaped objects and the stacking in multiple layers.
View Article and Find Full Text PDFMechanically and visually imperceptible sensor sheets integrated with lightweight wireless loggers are employed in ultimate flexible hybrid electronics (FHE) to reduce vital stress/nervousness and monitor natural biosignal responses. The key technologies and applications for conceptual sensor system fabrication are reported, as exemplified by the use of a stretchable sensor sheet completely conforming to an individual's body surface to realize a low-noise wireless monitoring system (<1 µV) that can be attached to the human forehead for recording electroencephalograms. The above system can discriminate between Alzheimer's disease and the healthy state, thus offering a rapid in-home brain diagnosis possibility.
View Article and Find Full Text PDFIn this study, ultralow 1/ noise organic thin-film transistors (OTFTs) based on parylene gate dielectrics modified with triptycene (Trip) modifiers were fabricated. The fabricated OTFTs showed the lowest 1/ noise level among those of previously reported OTFTs. It is well known that 1/ noise causes degradation of signal integrity in analog and digital circuits.
View Article and Find Full Text PDFWe present a highly ordered surface modification layer for polymers based on ambient solution-processed triptycene (Trip) derivatives for high-mobility organic thin-film transistors (OTFTs). The nested packing of Trip molecules results in the formation of 2D hexagonal arrays, which stack one-dimensionally on the surface of polymer dielectrics without anchoring groups. The Trip surface was previously shown to be preferable for the growth of organic semiconductors (OSCs), and hence for enhancing the mobility of OTFTs.
View Article and Find Full Text PDFOne-dimensional metal nanowires offer great potential in printing transparent electrodes for next-generation optoelectronic devices such as flexible displays and flexible solar cells. Printing fine patterns of metal nanowires with widths <100 μm is critical for their practical use in the devices. However, the fine printing of metal nanowires onto polymer substrates remains a major challenge owing to their unintended alignment.
View Article and Find Full Text PDFNeural interfaces enabling light transmittance rely on optogenetics to control and monitor specific neural activity, thereby facilitating deeper understanding of intractable diseases. This study reports the material strategy underlying an optogenetic neural interface comprising stretchable and transparent conductive tracks and capable of demonstrating high biocompatibility after long-term (5-month) implantation. Ag/Au core-shell nanowires contribute toward improving track performance in terms of stretchability (<60% strain), transparency (<83%), and electrical resistance (15 Ω sq ).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
This paper presents a flexible organic thin-film transistor (OTFT) amplifier for bio-signal monitoring and presents the chip component assembly process. Using a conductive adhesive and a chip mounter, the chip components are mounted on a flexible film substrate, which has OTFT circuits. This study first investigates the assembly technique reliability for chip components on the flexible substrate.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
As described in this paper, we propose a sheet-type pressure sensor to support assistive technology for artificial knee joint replacement. The proposed pressure sensor consists of two sheets: an electrode sheet with metal wiring and a flexible polymer-based insulating layer on 80 μm polyimide film, as well as a pressure-sensitive conductive sheet that can function as a pressure-to-resistance sensor. We developed a 5 cm × 7 cm pressure sensor sheet with 116 sensing points.
View Article and Find Full Text PDFA biaxially wave-shaped polydimethylsiloxane (PDMS) surface was developed simply by using a taro leaf as the template. The resulting leaf-templated PDMS (L-PDMS) possesses a micro-sized curved interface structure, which is greatly beneficial for the exact embedding of a silver nanowire (AgNW) network conductive film covering the L-PDMS surface. The intrinsically curved AgNW/L-PDMS film surface, without any dangling nanowire, could prevent the fracture of AgNWs due to stretching stress even after cyclic stretching.
View Article and Find Full Text PDFSilver nanowires (AgNWs) are excellent candidate electrode materials in next-generation wearable devices due to their high flexibility and high conductivity. In particular, patterning techniques for AgNWs electrode manufacture are very important in the roll-to-roll printing process to achieve high throughput and special performance production. It is also essential to realize a non-contact mode patterning for devices in order to keep the pre-patterned components away from mechanical damages.
View Article and Find Full Text PDFCopper nanowire (CuNW) conductors have been considered to have a promising perspective in the area of stretchable electronics due to the low price and high conductivity. However, the fabrication of CuNW conductors suffers from harsh conditions, such as high temperature, reducing atmosphere, and time-consuming transfer step. Here, a simple and rapid one-step photonic sintering technique was developed to fabricate stretchable CuNW conductors on polyurethane (PU) at room temperature in air environment.
View Article and Find Full Text PDFTransparent electrode based on silver nanowires (AgNWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of AgNWs transparent electrode is still dramatically limited by the contact resistance between nanowires at high transmittance. Polyvinylpyrrolidone (PVP) layer adsorbed on the nanowire surface acts as an electrically insulating barrier at wire-wire junctions, and some devastating post-treatment methods are proposed to reduce or eliminate PVP layer, which usually limit the application of the substrates susceptible to heat or pressure and burden the fabrication with high-cost, time-consuming, or inefficient processes.
View Article and Find Full Text PDFSilver nanowire (AgNW) films with a random mesh structure have attracted considerable attention as high-performance flexible transparent electrodes that can replace the expensive and brittle ITO-sputtered films widely used in displays, touch screens, and solar cells. Methods such as heating, pressure treatment, and light treatment are usually used to obtain an optically transparent and electrically conductive film comparable to those of commercial ITO. However, the adhesion between the AgNW film and the substrate is so weak that other overcoatings or extra treatments are necessary.
View Article and Find Full Text PDFWe formulate copper salt (copper formate/acetate/oleate) precursor inks for photonic sintering using high-intensity pulsed light (HIPL) based on the ink's light absorption ability. The inks can be developed through controllable crystal field splitting states (i.e.
View Article and Find Full Text PDF