Publications by authors named "Teplitski M"

The European Union (EU) regulations mandate 10% of all food packaging to be reusable by 2030. United States (U.S.

View Article and Find Full Text PDF

Reducing loss and waste of fresh produce requires a systems-wide approach, where supply chain, logistical, and cold chain considerations are balanced with plant breeding, biotechnological, biochemical, and bioinspired solutions. Even though bioengineered specialty crops got off to a rocky start, genetically modified nonbrowning apples and potatoes have been on the market for almost a decade, with bioengineered pineapples, tomatoes, and gene-edited leafy greens with novel taste and nutritional profiles entering the market this year. Traditional and modern breeding expand the toolset of solutions for alleviating labor concerns, extending shelf life, and developing a generally tastier product less likely to be wasted by consumers.

View Article and Find Full Text PDF

Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the cyanobacterial species , other filamentous cyanobacterial strains and bacterial heterotrophs are readily detected.

View Article and Find Full Text PDF

There are a number of opportunities for reducing loss and waste, and extending shelf life of fresh produce that go beyond cold chain optimization. For example, plant genotype (including ripening-related genes), presence of phytopathogens, maturity at harvest, and environmental conditions close to the harvest time, storage conditions, and postharvest treatments (washing, cutting, and waxing) all impact both shelf life of produce and food safety outcomes. Therefore, loss can be reduced and shelf life of fresh produce can be extended with plant breeding to manipulate ripening-related traits, or with pre- and postharvest treatments delaying senescence and decay.

View Article and Find Full Text PDF

Some fungal epithiodiketopiperazine alkaloids display α,β-polysulfide bridges alongside diverse structural variations. However, the logic of their chemical diversity has rarely been explored. Here, we report the identification of three new (2, 3, 8) and five known (1, 4-7) epithiodiketopiperazines of this subtype from a marine-derived Penicillium sp.

View Article and Find Full Text PDF

In this study, newly identified small molecules were examined for efficacy against 'Candidatus Liberibacter asiaticus' in commercial groves of sweet orange (Citrus sinensis) and white grapefruit (Citrus paradisi) trees. We used benzbromarone and/or tolfenamic acid delivered by trunk injection. We evaluated safety and efficacy parameters by performing RNAseq of the citrus host responses, 16S rRNA gene sequencing to characterize citrus-associated microbial communities during treatment, and qRT-PCR as an indirect determination of 'Ca.

View Article and Find Full Text PDF

Black band disease (BBD), a lethal, polymicrobial disease consortium dominated by the cyanobacterium Roseofilum reptotaenium, kills many species of corals worldwide. To uncover chemical signals or cytotoxins that could be important in proliferation of Roseofilum and the BBD layer, we examined the secondary metabolites present in geographically diverse collections of BBD from Caribbean and Pacific coral reefs. Looekeyolide A (1), a 20-membered macrocyclic compound formed by a 16-carbon polyketide chain, 2-deamino-2-hydroxymethionine, and d-leucine, and its autoxidation product looekeyolide B (2) were extracted as major compounds (∼1 mg g dry wt) from more than a dozen field-collected BBD samples.

View Article and Find Full Text PDF
Article Synopsis
  • Some salmonellosis outbreaks are caused by a specific type of bacteria called serovar Newport that comes from eating vegetables, especially tomatoes.
  • Scientists wanted to see if serovar Newport has special traits that help it survive in plants compared to other types of salmonella.
  • They found that while many genes helped both Newport and another type called Typhimurium grow in tomatoes, Newport had one unique gene that seemed to give it an advantage in surviving on plants.
View Article and Find Full Text PDF

Outbreaks of gastrointestinal illness, linked to the consumption of fruits, vegetables, and sprouts, continue to capture the attention of the general public and scientists. The recurrence of these outbreaks, despite heightened producer and consumer awareness, combined with improved sanitation protocols and technology, can be explained by the hypothesis that enteric pathogens, such as nontyphoidal Salmonella spp. and enterovirulent Escherichia coli, have evolved to exploit plants as alternative hosts.

View Article and Find Full Text PDF

The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. , similarly to phytobacteria, appears to be capable of producing the plant hormone auxin via an indole-3-pyruvate decarboxylase (IpdC), a key enzyme of the IPyA pathway. A deletion of the significantly reduced auxin synthesis in laboratory culture.

View Article and Find Full Text PDF

spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood.

View Article and Find Full Text PDF

Huanglongbing (HLB; "citrus greening" disease) has caused significant damages to the global citrus industry as it has become well established in leading citrus-producing regions and continues to spread worldwide. Insecticidal control has been a critical component of HLB disease management, as there is a direct relationship between vector control and Candidatus Liberibacter spp. (i.

View Article and Find Full Text PDF

In this laboratory experiment, we propose an opportunity for students to broaden their understanding of the ecology of antibiotic-resistant and sensitive waterborne bacteria. Antibiotics can be found in rivers or soil as a consequence of agricultural practices or as a result of human use. Concentrations of antibiotics in the environment may range from a few ng to μg L.

View Article and Find Full Text PDF
Article Synopsis
  • Outbreaks of illnesses from pathogens like Salmonella are increasingly linked to eating fruits and vegetables, making it essential to understand factors that influence their growth on fresh produce.
  • Research indicated that while pre-harvest practices have limited impact on Salmonella in tomatoes, harvest timing plays a significant role, especially influenced by climatic conditions.
  • Analysis using regression trees revealed that higher humidity before harvest was associated with lower Salmonella levels, and lab experiments established that tomatoes with their natural microbiota had reduced Salmonella growth in high humidity conditions.
View Article and Find Full Text PDF

Black Band Disease (BBD), the destructive microbial consortium dominated by the cyanobacterium , affects corals worldwide. While the taxonomic composition of BBD consortia has been well-characterized, substantially less is known about its functional repertoire. We sequenced the metagenomes of Caribbean and Pacific black band mats and cultured and obtained five metagenome-assembled genomes (MAGs) of , nine of Proteobacteria, and 12 of Bacteroidetes.

View Article and Find Full Text PDF

Stable associations between plants and microbes are critical to promoting host health and productivity. The objective of this work was to test the hypothesis that restructuring of the core microbiota may be associated with the progression of huanglongbing (HLB), the devastating citrus disease caused by , , and The microbial communities of leaves ( = 94) and roots ( = 79) from citrus trees that varied by HLB symptom severity, cultivar, location, and season/time were characterized with Illumina sequencing of 16S rRNA genes. The taxonomically rich communities contained abundant core members (i.

View Article and Find Full Text PDF

Human enteric pathogens, such as spp. and verotoxigenic , are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens.

View Article and Find Full Text PDF

The RNA-binding chaperone Hfq plays critical roles in the establishment and functionality of the symbiosis between Sinorhizobium meliloti and its legume hosts. A mutation in hfq reduces symbiotic efficiency resulting in a Fix phenotype, characterized by the inability of the bacterium to fix nitrogen. At least in part, this is due to the ability of Hfq to regulate the fixLJ operon, which encodes a sensor kinase-response regulator pair that controls expression of the nitrogenase genes.

View Article and Find Full Text PDF

It is becoming clear that human enteric pathogens, like Salmonella, can efficiently colonize vegetative and reproductive organs of plants. Even though the bacterium's ability to proliferate within plant tissues has been linked to outbreaks of salmonellosis, little is known about regulatory and physiological adaptations of Salmonella, or other human pathogens, to their persistence in plants. A screen of Salmonella deletion mutants in tomatoes identified rcsA and rcsB genes as those under positive selection.

View Article and Find Full Text PDF

Petrifilms are dehydrated agar culture plates that have been used to quantify colony forming units (CFU) mL of either aerobic bacteria (Petrifilm-AC) or fungus (Petrifilm-YM), depending on substrate composition. Microbes in irrigation systems can indicate biofilm risk and potential clogging of irrigation emitters. The research objective was to compare counts on Petrifilms versus traditional, hydrated-agar plates using samples collected from recirculated irrigation waters and cultures of isolated known species.

View Article and Find Full Text PDF

Dark Spot Syndrome (DSS) is one of the most common diseases of boulder corals in the Caribbean. It presents as sunken brown lesions in coral tissue, which can spread quickly over coral colonies. With this study, we tested the hypothesis that similar to other coral diseases, DSS is a dysbiosis characterized by global shifts in the coral microbiome.

View Article and Find Full Text PDF

Unlabelled: Recurrent outbreaks of bacterial gastroenteritis linked to the consumption of fresh fruits and vegetables highlight the paucity of understanding of the ecology of Salmonella enterica under crop production and postharvest conditions. These gaps in knowledge are due, at least in part, to the lack of suitable surrogate organisms for studies for which biosafety level 2 is problematic. Therefore, we constructed and validated an avirulent strain of Salmonella enterica serovar Typhimurium.

View Article and Find Full Text PDF