The 1,3-dithiolane ring has been recently rehabilitated as a chemical scaffold in drug design. However, for derivatives that are substituted in position 4, the introduction of a chiral center on the heterocycle demands the separation and characterization of the stereoisomers. We report the first chiral resolution and absolute configuration (AC) assignment for (1,4-dithiaspiro[4.
View Article and Find Full Text PDFBackground: To create a dual-acting vaccine that can fight against tuberculosis, we combined antigenic arabino-mannan analogues with the Ag85B protein. To start the process, we studied the impact of modifying different parts of the Ag85B protein on its ability to be recognized by antibodies.
Results: Through our research, we discovered that three modified versions of the protein, rAg85B-K30R, rAg85B-K282R, and rAg85B-K30R/K282R, retained their antibody reactivity in healthy individuals and those with tuberculosis.
Conjugation via disuccinimidyl homobifunctional linkers is reported in the literature as a convenient approach for the synthesis of glycoconjugate vaccines. However, the high tendency for hydrolysis of disuccinimidyl linkers hampers their extensive purification, which unavoidably results in side-reactions and non-pure glycoconjugates. In this paper, conjugation of 3-aminopropyl saccharides via disuccinimidyl glutarate (DSG) was exploited for the synthesis of glycoconjugates.
View Article and Find Full Text PDFl-Theanine (l-Th) was synthesized by simply mixing the reactants (l-glutamine and ethylamine in water) at 25 °C and Bacillus subtilis γ-glutamyl transferase (BsGGT) covalently immobilized on glyoxyl-agarose according to a methodology previously reported by our research group; neither buffers, nor other additives were needed. Ratio of l-glutamine (donor) to ethylamine (acceptor), pH, enzymatic units (IU), and reaction time were optimized (molar ratio of donor/acceptor=1 : 8, pH 11.6, 1 IU mL , 6 h), furnishing l-Th in 93 % isolated yield (485 mg, 32.
View Article and Find Full Text PDFA library of alkyl galactosides was synthesized to provide the "polar head" of sugar fatty acid esters to be tested as non-ionic surfactants. The enzymatic transglycosylation of lactose resulted in alkyl β-D-galactopyranosides, whereas the Fischer glycosylation of galactose afforded isomeric mixtures of α- and β-galactopyranosides and α- and β-galactofuranosides. n-Butyl galactosides from either routes were enzymatically esterified with palmitic acid, used as the fatty acid "tail" of the surfactant, giving the corresponding n-butyl 6-O-palmitoyl-galactosides.
View Article and Find Full Text PDFγ-Glutamyl-peptides are frequently endowed with biological activities. In this work, " peptides" such as γ-glutamyl-methionine () and γ-glutamyl-()-allyl-cysteine (), as well as the neuroprotective γ-glutamyl-taurine () and the antioxidant ophthalmic acid (), were synthesized through an enzymatic transpeptidation reaction catalyzed by the γ-glutamyl transferase from (GGT) using glutamine as the γ-glutamyl donor. GGT was covalently immobilized on glyoxyl-agarose resulting in high protein immobilization yield and activity recovery (>95%).
View Article and Find Full Text PDFMolecules containing carbohydrate moieties play essential roles in fighting a variety of bacterial and viral infections. Consequently, the design of new carbohydrate-containing drugs or vaccines has attracted great attention in recent years as means to target several infectious diseases.Conventional methods to produce these compounds face numerous challenges because their current production technology is based on chemical synthesis, which often requires several steps and uses environmentally unfriendly reactants, contaminant solvents, and inefficient protocols.
View Article and Find Full Text PDFOver the last decades, biocatalysis has achieved growing interest thanks to its potential to enable high efficiency, high yield, and eco-friendly processes aimed at the production of pharmacologically relevant compounds. Particularly, biocatalysis proved an effective and potent tool in the preparation of chiral molecules, and the recent innovations of biotechnologies and nanotechnologies open up a new era of further developments in this field. Different strategies are now available for the synthesis of chiral drugs and their intermediates.
View Article and Find Full Text PDFIn the last few years, nanomaterials based on fullerene have begun to be considered promising tools in the development of efficient adjuvant/delivery systems for vaccination, thanks to their several advantages such as biocompatibility, size, and easy preparation and modification. In this work we reported the chemoenzymatic synthesis of natural polymannan analogues (di- and tri-mannan oligosaccharides characterized by α1,6man and/or α1,2man motifs) endowed with an anomeric propargyl group. These sugar derivatives were submitted to 1,3 Huisgen dipolar cycloaddition with a malondiamide-based chain equipped with two azido terminal groups.
View Article and Find Full Text PDFExogenous application of human epidermal growth factor (hEGF) stimulates epidermal wound healing. The aim of this study was to develop bioconjugates based on hEGF mimicking the protein in its native state and thus suitable for tissue engineering applications, in particular for treating skin-related disorders as burns. Ribonuclease A (RNase A) was used to investigate a number of different activated-agarose carriers: cyanogen bromide (CNBr)-activated-agarose and glyoxyl-agarose showed to preserve the appropriate orientation of the protein for receptor binding.
View Article and Find Full Text PDFRegioselective deprotection of acetylated mannose-based mono- and disaccharides differently functionalized in anomeric position was achieved by enzymatic hydrolysis. lipase (CRL) and acetyl xylan esterase (AXE) were immobilized on octyl-Sepharose and glyoxyl-agarose, respectively. The regioselectivity of the biocatalysts was affected by the sugar structure and functionalization in anomeric position.
View Article and Find Full Text PDFMycobacteria infection resulting in tuberculosis (TB) is one of the top ten leading causes of death worldwide in 2018, and lipoarabinomannan (LAM) has been confirmed to be the most important antigenic polysaccharide on the TB cell surface. In this study, a convenient synthetic method has been developed for synthesizing three branched oligosaccharides derived from LAM, in which a core building block was prepared by enzymatic hydrolysis in flow chemistry with excellent yield. After several steps of glycosylations, the obtained oligosaccharides were conjugated with recombinant human serum albumin (rHSA) and the ex-vivo ELISA tests were performed using serum obtained from several TB-infected patients, in order to evaluate the affinity of the glycoconjugate products for the human LAM-antibodies.
View Article and Find Full Text PDFIn this work, a mono- and a bi-enzymatic analytical immobilized enzyme reactors (IMERs) were developed as prototypes for biosynthetic purposes and their performances in the in-flow synthesis of nucleoside analogues of pharmaceutical interest were evaluated. Two biocatalytic routes based on nucleoside 2'-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) and uridine phosphorylase from Clostridium perfrigens (CpUP)/purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) were investigated in the synthesis of 2'-deoxy, 2',3'-dideoxy and arabinonucleoside derivatives. LrNDT-IMER catalyzed the synthesis of 5-fluoro-2'-deoxyuridine and 5-iodo-2'-deoxyuridine in 65-59% conversion yield, while CpUP/AhPNP-IMER provided the best results for the preparation of arabinosyladenine (60% conversion yield).
View Article and Find Full Text PDFThe bi-enzymatic synthesis of the antiviral drug vidarabine (arabinosyladenine, ara-A), catalyzed by uridine phosphorylase from (UP) and a purine nucleoside phosphorylase from (PNP), was re-designed under continuous-flow conditions. Glyoxyl-agarose and EziG1 (Opal) were used as immobilization carriers for carrying out this preparative biotransformation. Upon setting-up reaction parameters (substrate concentration and molar ratio, temperature, pressure, residence time), 1 g of vidarabine was obtained in 55% isolated yield and >99% purity by simply running the flow reactor for 1 week and then collecting (by filtration) the nucleoside precipitated out of the exiting flow.
View Article and Find Full Text PDFGanglioside GM3 is well known as a tumor-associated carbohydrate antigen on several types of tumors. Many studies have demonstrated that GM3 plays roles in cells proliferation, adhesion, motility and differentiation, which is involved in the process of cancer development. In the present study, we developed methods to synthesize GM3 analogues conveniently.
View Article and Find Full Text PDFGanglioside GM3, belonging to glycosphingolipid family, has been known as tumor-associated carbohydrate antigen on several types of tumor. Many studies have revealed that GM3 plays a role in cell proliferation, adhesion and differentiation, which is crucial in the process of cancer development. In the present study, we firstly synthesized novel mannose-containing GM3 analogues by enzymatic hydrolysis and chemical procedures.
View Article and Find Full Text PDFTuberculosis (TB) is the first cause of death from infectious diseases worldwide. Only a single anti-TB vaccine is currently available for clinical use, but its efficacy is not achieved with certainty. The aim of this work is to provide a basis for the rational design of a neo-glycoconjugate vaccine against TB.
View Article and Find Full Text PDFFifteen new multifunctional conjugates were designed and synthesized by chemically linking the steroidal framework of natural occurring γ-oryzanol and γ-oryzanol-derived phytosterols to a wide range of bioactive natural compounds (fatty acids, phenolic acids, amino acids, lipoic acid, retinoic acid, curcumin, and resveratrol). Starting from γ-oryzanol, which is the main component of rice bran oil, this study was aimed at assessing if the conjugation strategy might enhance some γ-oryzanol bioactivities. The antioxidant activity was evaluated through three different mechanisms, namely, DPPH-scavenging activity, metal-chelating activity, and β-carotene-bleaching inhibition.
View Article and Find Full Text PDFTuberculosis is the deadliest infectious disease in the world. The variable efficacy of the current treatments highlights the need for more effective agents against this disease. In the past few years, we focused on the investigation of antigenic glycoconjugates starting from recombinant Ag85B (rAg85B), a potent protein antigen from .
View Article and Find Full Text PDFOne of the most popular enzymes used for the in vitro cleavage of fusion proteins is enterokinase (EK, E.C. 3.
View Article and Find Full Text PDFGanglioside GM3 is implicated in a variety of physiological and pathological processes. Due to GM3 exposes on the outer surface of cell membranes, it is strongly associated with cell adhesion, motility and differentiation. Neurite outgrowth is a key process in the development of functional neuronal circuits and regeneration of the nervous system after injury.
View Article and Find Full Text PDFImproved methods for detailed characterization of complex glycoproteins are required in the growing sector of biopharmaceuticals. Hydrophilic interaction liquid chromatography (HILIC) coupled to high resolution (HR) time-of-flight mass spectrometric (TOF-MS) detection was examined for the characterization of intact neo-glycoproteins prepared by chemical conjugation of synthetic saccharides to the lysine residues of selected recombinant proteins. The separation performances of three different amide HILIC columns (TSKgel Amide-80, XBridge BEH and AdvanceBio Glycan Mapping) were tested.
View Article and Find Full Text PDFTuberculosis is still one of the most deadly infectious diseases worldwide, and the use of conjugated antigens, obtained by combining antigenic oligosaccharides, such as the lipoarabinomannane (LAM), with antigenic proteins from (MTB), has been proposed as a new strategy for developing efficient vaccines. In this work, we investigated the effect of the chemical glycosylation on two recombinant MTB proteins produced in with an additional seven-amino acid tag (recombinant Ag85B and TB10.4).
View Article and Find Full Text PDFThis paper describes the immobilization of the neutral protease from and its application in the regioselective hydrolysis of acetylated nucleosides, including building blocks useful for the preparation of anticancer products. Regarding the immobilization study, different results have been obtained depending on the immobilization procedure. Epoxy hydrophobic carriers gave a poorly stable derivative that released almost 50% of the immobilized protein under the required reaction conditions.
View Article and Find Full Text PDFLysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine.
View Article and Find Full Text PDF