Cyborg Bionic Syst
May 2024
Single-leg landing (SL) is often associated with a high injury risk, especially anterior cruciate ligament (ACL) injuries and lateral ankle sprain. This work investigates the relationship between ankle motion patterns (ankle initial contact angle [AICA] and ankle range of motion [AROM]) and the lower limb injury risk during SL, and proposes an optimized landing strategy that can reduce the injury risk. To more realistically revert and simulate the ACL injury mechanics, we developed a knee musculoskeletal model that reverts the ACL ligament to a nonlinear short-term viscoelastic mechanical mechanism (strain rate-dependent) generated by the dense connective tissue as a function of strain.
View Article and Find Full Text PDFTo explore the biomechanical changes of the lumbar spine segment of idiopathic scoliosis under different loads by simulating six kinds of lumbar spine motions based on a three-dimensional finite element (FE) model. Methods According to the plain CT scan data of L1-L5 segment of an AIS patient, a three-dimensional FE model was established to simulate the biomechanics of lumbar scoliosis under different loads. The lumbar model was reconstructed using Mimics20.
View Article and Find Full Text PDF