Publications by authors named "Tenzin Norden"

The recently emerged ferromagnetic two-dimensional (2D) materials provide unique platforms for compact spintronic devices down to the atomic-thin regime; however, the prospect is hindered by the limited number  of ferromagnetic 2D materials discovered with limited choices of magnetic properties. If 2D antiferromagnetism could be converted to 2D ferromagnetism, the range of 2D magnets and their potential applications would be significantly broadened. Here, we discovered emergent ferromagnetism by interfacing non-magnetic WS layers with the antiferromagnetic FePS.

View Article and Find Full Text PDF

Lifting the valley degeneracy of monolayer transition metal dichalcogenides (TMDs) would allow versatile control of the valley degree of freedom. We report a giant valley exciton splitting of 16 meV/T for monolayer WS, using the proximity effect from an EuS substrate, which is enhanced by nearly two orders of magnitude from that obtained by an external magnetic field. More interestingly, a sign reversal of the valley splitting is observed as compared to that of WSe on EuS.

View Article and Find Full Text PDF

Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field.

View Article and Find Full Text PDF