Publications by authors named "Tengyu Geng"

Background And Objective: The emergence of peri-implant diseases has prompted various methods for decontaminating the implant surface. This study compared the effectiveness of three different approaches, chlorhexidine digluconate (CHX) combined with erbium-doped yttrium-aluminum-garnet (Er:YAG) laser, photodynamic therapy (PDT), and CHX only, for reducing biofilm vitality from implant-like titanium surfaces.

Study Design/materials And Methods: The study involved eight volunteers, each receiving a custom mouth device containing eight titanium discs.

View Article and Find Full Text PDF

Bioprinting, a technology that allows depositing living cells and biomaterials together into a complex tissue architecture with desired pattern, becomes a revolutionary technology for fabrication of engineered constructs. Previously, we have demonstrated that EphrinB2-modified dental pulp stem cells (DPSCs) are expected to be promising seed cells with enhanced osteogenic differentiation capability for alveolar bone regeneration. In this study, we aimed to bioprint EphrinB2-overexpressing DPSCs with low-concentrated Gelatin methacrylate (GelMA) hydrogels into three-dimensional (3D) constructs.

View Article and Find Full Text PDF

Osteoporosis is a major challenge to oral implants, and this study focused on improving the osseointegration ability of titanium (Ti) implants in osteoporosis environment surface modification, including doping of strontium ion and preparation of nanoscale surface feature. Our previous studies have shown that strontium (Sr) ions can enhance osteogenic activity. Therefore, we aimed to comprehensively evaluate the effect of hydrothermal treatment of Sr-doped titanium implant coating on bone-binding properties in the microenvironment of osteoporosis in this study.

View Article and Find Full Text PDF

Implant-supported dentures are widely used in patients with defect or loss of dentition because these have higher chewing efficiency and do not damage the adjacent teeth compared with fixed or removable denture. An implant-supported denture carries the risk of failure in some systemic diseases, including osteoporosis, because of a non-ideal local microenvironment. Clinically common physical and chemical modifications are used to change the roughness of the implant surface to promote osseointegration, but they have limitations in promoting osteoinduction and inhibiting bone resorption.

View Article and Find Full Text PDF

The effectiveness of stem cell-based periodontal tissue engineering need to be assessed by preclinical animal studies. Dog models are widely used animal models; however, there are not sufficient data on characterization of canine dental mesenchymal stem cells. Therefore, we aimed to compare the characteristics among canine and human periodontal ligament stem cells and canine and human dental pulp stem cells.

View Article and Find Full Text PDF

Background: Alveolar bone loss is a frequent occurrence. Dental pulp stem cells (DPSCs) which have invasive accessibility and high osteogenic potential is a promising source for cell-based bone regeneration. EphrinB2 is involved in bone homeostasis and osteogenesis.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the possible crosstalk between LPS/toll-like receptor 4 (TLR4) and ephrinB2 signaling in mediating osteogenic differentiation of PDLSCs.

Materials And Methods: Human periodontal ligament stem cells (hPDLSCs) were harvested and treated with different concentrations of LPS under osteogenic induction. qPCR, alkaline phosphatase (ALP) staining, and Alizarin Red S staining were performed to assess osteogenic gene expression, ALP activity, and mineralized nodule formation.

View Article and Find Full Text PDF

EphrinB2, a membrane protein regulating bone homeostasis, has been demonstrated to induce osteogenic gene expression in periodontal ligament fibroblasts. The aim of this study was to explore the effects of ephrinB2 on osteogenic differentiation of periodontal ligament stem cells and on alveolar bone regeneration in vivo. We assessed the osteogenic gene expression and osteogenic differentiation potential of ephrinB2-modified human and canine periodontal ligament stem cells, in which ephrinB2 expression was upregulated via lentiviral vector transduction.

View Article and Find Full Text PDF

Objectives: We aimed to accelerate angiogenesis in pulp regeneration by modulating ephrinB2 expression in stem cells from apical papilla (SCAPs).

Materials And Methods: Stem cells from apical papilla were transducted with ephrinB2-lentiviral expression vector (ephrinB2-SCAPs) in experimental group and green fluorescent protein (GFP-SCAPs) in control group. The transduction efficiency was confirmed by real-time PCR and Western blot assays.

View Article and Find Full Text PDF

Purpose: To evaluate the polymerization of dual-cured flowable composite core irradiated by super-high intensity light with short time.

Methods: The light-proof silicon rubber cuboid mold with one end open was syringed and filled by dual-cured flowable resin composite core, then the open end of mold was irradiated directly by a light unit at 1000 mW/cm(2) ×10, ×20 s; or at 3200 mW/cm(2) × 3, ×6 s. The specimens were stored in the light-proof box.

View Article and Find Full Text PDF

Surgical removal of the mandibular third molars is one of the most common procedures performed by dentists, as well as by oral and maxillofacial surgeons. Accidental displacement of teeth or roots into the fascial spaces, during surgical removal of the mandibular third molars, is a rare, but serious complication. Herein, we present 2 cases of iatrogenically displaced mandibular third molar roots into the sublingual space, which were successfully removed under local anesthesia intraorally.

View Article and Find Full Text PDF