Publications by authors named "Tengrui Ma"

Two-dimensional (2D) metal-organic framework sheets, in comparison to the 3D analogues, offer potential advantages for intercalation of guest components between the layers, exfoliation/dispersion into solutions, and processing into thin films. As a versatile platform for leveraging organic functions, the 2D Zr(IV)-carboxylate net here features a dendritic Sierpinski tritopic linker with conjugated alkyne branches and a photoactive triphenylamine core. The 2D solid can be easily dispersed in water and many other solvents, resulting in stable and fluorescent suspension for sensing nitro aromatic compounds and Fe ions with high quenching efficiencies and ultralow limits of detection.

View Article and Find Full Text PDF

The useful yet underutilized backfolded design is invoked here for functionalizing porous solids with the versatile carbazole function. Specifically, we attach carbazole groups as backfolded side arms onto the backbone of a linear dicarboxyl linker molecule. The bulky carbazole side arms point away from the carboxyl links and do not disrupt the Zr-carboxyl framework formation; namely, the resultant MOF solid Zr features the same net as that of the unfunctionalized dicarboxyl linker, also known as the PCN-111 net or UiO-66 net.

View Article and Find Full Text PDF

Using a carbon-rich designer metal-organic framework (MOF), we open a high-yield synthetic strategy for iron-nitrogen-doped carbon (Fe-N-C) nanotube materials that emulate the electrocatalysis performance of commercial Pt/C. The Zr(IV)-based MOF solid boasts multiple key functions: (1) a dense array of alkyne units over the backbone and the side arms, which are primed for extensive graphitization; (2) the open, branched structure helps maintain porosity for absorbing nitrogen dopants; and (3) ferrocene units on the side arms as atomically dispersed precursor catalyst for targeting micropores and for effective iron encapsulation in the carbonized product. As a result, upon pyrolysis, over 89% of the carbon component in the MOF scaffold is successfully converted into carbonized products, thereby contrasting the easily volatilized carbon of most MOFs.

View Article and Find Full Text PDF