Fine particulate matter (PM) is a leading environmental cause for the increased morbidity and mortality of atherosclerosis (AS) worldwide, but little is known about the toxic component and disturbance of PM exposure on foam cell formation, a crucial pathological process in AS. Airborne magnetite nanoparticles (NPs) have been reported to be detected in human serum, which inevitably encounter with macrophages in atherosclerotic plaques, thus throwing potential disturbance on the formation of macrophage-derived foam cells. Here we comprehensively unveiled that the environmental concentrations of PM exposure triggered and potentiated the formation of macrophage-derived foam cells using both real-ambient PM-exposed mice and AS mice models, including high-fat diet-fed mice and apolipoprotein E-deficient mice.
View Article and Find Full Text PDFWhether tobacco smoking affects the occurrence and development of coronavirus disease 2019 (COVID-19) is still a controversial issue, and potential biomarkers to predict the adverse outcomes of smoking in the progression of COVID-19 patients have not yet been elucidated. To further uncover their linkage and explore the effective biomarkers, three proteomics and metabolomics databases (i.e.
View Article and Find Full Text PDFEpidemiological studies have demonstrated a strong association of ambient fine particulate matter (PM) exposure with the increasing mortality by ischemic heart disease (IHD), but the involved mechanisms remain poorly understood. Herein, we found that the chronic exposure of real ambient PM led to the upregulation of hypoxia-inducible factor-1 alpha (HIF-1α) protein in the myocardium of mice, accompanied by obvious myocardial injury and hypertrophy. Further data from the hypoxia-ischemia cellular model indicated that PM-induced HIF-1α accumulation was responsible for the promotion of myocardial hypoxia injury.
View Article and Find Full Text PDFVirus receptors are highly involved in mediating the entrance of infectious viruses into host cells. Here, we found that typical chemical exposure caused the upregulation of virus receptor mRNA levels. Chemicals with the same structural characteristics can affect the transcription of angiotensin-converting enzyme 2 (), a dominant receptor of SARS-CoV-2.
View Article and Find Full Text PDFBackground: Considering the inevitability for humans to be frequently exposed to nanoparticles (NPs), understanding the biosafety of NPs is important for rational usage. As an important part of the innate immune system, macrophages are widely distributed in vital tissues and are also a dominant cell type that engulfs particles. Mitochondria are one of the most sensitive organelles when macrophages are exposed to NPs.
View Article and Find Full Text PDF