Publications by authors named "Tengjun Liu"

After the introduction of recurrence, an important property of the biological brain, spiking neural networks (SNNs) have achieved unprecedented classification performance. But they still cannot outperform many artificial neural networks. Modularity is another crucial feature of the biological brain.

View Article and Find Full Text PDF

Introduction: Intracortical Brain-Computer Interfaces (iBCI) establish a new pathway to restore motor functions in individuals with paralysis by interfacing directly with the brain to translate movement intention into action. However, the development of iBCI applications is hindered by the non-stationarity of neural signals induced by the recording degradation and neuronal property variance. Many iBCI decoders were developed to overcome this non-stationarity, but its effect on decoding performance remains largely unknown, posing a critical challenge for the practical application of iBCI.

View Article and Find Full Text PDF

Versatile and energy-efficient neural signal processors are in high demand in brain-machine interfaces and closed-loop neuromodulation applications. In this paper, we propose an energy-efficient processor for neural signal analyses. The proposed processor utilizes three key techniques to efficiently improve versatility and energy efficiency.

View Article and Find Full Text PDF

One of the extraordinary characteristics of the biological brain is the low energy expense it requires to implement a variety of biological functions and intelligence as compared to the modern artificial intelligence (AI). Spike-based energy-efficient temporal codes have long been suggested as a contributor for the brain to run on low energy expense. Despite this code having been largely reported in the sensory cortex, whether this code can be implemented in other brain areas to serve broader functions and how it evolves throughout learning have remained unaddressed.

View Article and Find Full Text PDF

Spike sorting is a fundamental step in extracting single-unit activity from neural ensemble recordings, which play an important role in basic neuroscience and neurotechnologies. A few algorithms have been applied in spike sorting. However, when noise level or waveform similarity becomes relatively high, their robustness still faces a big challenge.

View Article and Find Full Text PDF

Objective: Brain Computer Interface (BCI) inefficiency indicates that there would be 10% to 50% of users are unable to operate Motor-Imagery-based BCI systems. Importantly, the almost all previous studieds on BCI inefficiency were based on tests of Sensory Motor Rhythm (SMR) feature. In this work, we assessed the occurrence of BCI inefficiency with SMR and Movement-Related Cortical Potential (MRCP) features.

View Article and Find Full Text PDF