Publications by authors named "Tengfei Wu"

With the development of industry, agriculture, and aquaculture, excessive ammonia nitrogen mainly involving ionic ammonia (NH) and molecular ammonia (NH) has inevitable access to the aquatic environment, posing a severe threat to water safety. Photocatalytic technology shows great advantages for ammonia nitrogen removal, such as its efficiency, reusability, low cost, and environmental friendliness. In this study, CP (g-CN/CoP) composite materials, which exhibited high-efficiency ammonia nitrogen removal, were synthesized through a simple self-assembly method.

View Article and Find Full Text PDF

Krüppel-like factor 6 (KLF6) knockdown provides protection against kidney ischemia/reperfusion injury and ischemic stroke. However, it is unclear whether it plays a role in myocardial infarction (MI). Here, the expression of KLF6 was analyzed using the Gene Expression Omnibus (GEO) database and determined in patients with MI.

View Article and Find Full Text PDF

An integrated path differential absorption (IPDA) lidar for CH leakage monitoring is proposed and demonstrated. In the simplified all-fiber optical layout, a homemade InGaAs/InP single-photon detector (SPD) using multi-channel technique with multi-mode fiber coupling is used to increase the maximum count rate and coupling efficiency. The system is calibrated in intensity and frequency domains.

View Article and Find Full Text PDF

This study discusses the limitations of the multi-color method for air refractive index compensation and introduces the nonlinear objective refractivity optimization (NORO) to address these shortcomings. Utilizing a nonlinear objective function and the Davidon-Fletcher-Powel (DFP) optimization method, NORO provides precise, self-corrected geometric distance without the need for extensive environmental sensing or broad spectral coverage. Compared to the multi-color method, the NORO method reduces the minimum usable spectral range from 600 nm to 40 nm, achieving consistency with the empirical formula within 2.

View Article and Find Full Text PDF

Precision measurement methods and technologies for large-scale three-dimensional coordinates are in high demand in advanced equipment manufacturing. The multi-station triangulation network represented by the rotary-laser scanning measurement system has the advantages of having high precision, having multitask parallel measurement capability, and having a high degree of automation. It is widely used in the docking of large components, quality control of key points, and collaborative positioning of production equipment.

View Article and Find Full Text PDF

Relaxin3 (rln3) has been associated with various emotional and cognitive processes, including stress, anxiety, learning, memory, motivational behavior, and circadian rhythm. Notably, previous report revealed that Rln3a played an indispensable role in testicular development and male fertility in Nile tilapia (Oreochromis niloticus). However, the underlying molecular mechanisms remain largely unknown.

View Article and Find Full Text PDF

Herein, a Sc(OTf)-catalyzed (3+2) annulation of 2-indolylmethanols with propargylic alcohols is reported. The reaction proceeds via a Friedel-Crafts-type allenylation/5-exo-annulation cascade. In the reaction, 2-indolylmethanol is used as a three-carbon synthon, and propargyl alcohol is used as a two-carbon synthon.

View Article and Find Full Text PDF

Background: This study aimed to conduct a prospective, randomized, controlled clinical trial using, Qidan Tangshen Granule, a traditional Chinese medicine (TCM), as an antioxidant, to treat diabetic kidney disease (DKD) patients.

Methods: A total of 355 patients were enrolled, and after exclusions, 219 patients were divided into an intervention group (n = 109) receiving Qidan Tangshen Granule treatment and a control group (n = 110) receiving conventional treatment. Demographic and physiological parameters were evaluated at baseline and 3 months and 12 months of follow-up.

View Article and Find Full Text PDF

Colloidosomes are microcapsules whose shells are composed of cumulated or fused colloidal particles. When colloidosomes are used for in situ encapsulation, it is still a challenge to achieve a high encapsulation efficiency and controllable release by an effective fabrication method. Herein, we present a highly efficient route for the large-scale preparation of colloidosomes.

View Article and Find Full Text PDF

Aberrations and multiple scattering in biological tissues critically distort light beams into highly complex speckle patterns. In this regard, digital optical phase conjugation (DOPC) is a promising technique enabling in-depth focusing. However, DOPC becomes challenging when using fluorescent guide stars for four main reasons: the low photon budget available, the large spectral bandwidth of the fluorescent signal, the Stokes shift between the emission and the excitation wavelength, and the absence of reference beam preventing holographic measurement.

View Article and Find Full Text PDF

The potential for adverse outcomes and classifications of glaucoma differ among race, country, gender, and family medical history. Nearly, 50 represent candidate genes are considered as potential contributors to the happening for the primary open-angle glaucoma (POAG) since the advent of GWASs. Our investigation is the first to report the Toll-like receptor 4 () and growth arrest-specific 7 () among people in Shenyang, China; to investigate whether single-nucleotide polymorphisms (SNPs) in () or gene are risk factors for POAG among people in Shenyang, China; and also to explore their potential pathogenic mechanisms.

View Article and Find Full Text PDF

Single-photon lidar has emerged as a strong technology for bathymetric measurements. However, its heightened sensitivity additionally makes it susceptible to solar radiation noise, particularly in the green light wavelength where solar radiation is strong, posing challenges for its daytime operation. To address this issue, a single-photon underwater lidar system is proposed and demonstrated.

View Article and Find Full Text PDF

Conventional cooling methods are based on active cooling technology by air conditioning, which consumes a large amount of energy and emits greenhouse gases. Radiative cooling is a novel promising passive cooling technology that uses external space as the cooling source and requires no additional energy consumption. Herein, we propose an approach to prepare highly dispersed BaSO nanoparticles (NPs) using a direct precipitation method combined with the in situ surface modification technology.

View Article and Find Full Text PDF

Precisely and efficiently measuring three-dimensional coordinates of key points on large-scale components in the manufacturing process of aircraft and ships is critically essential. This study presents a multi-target automatic positioning method based on rapid angle and distance measurement in parallel. The measurement processes for angles and distances are decoupled and, when executed simultaneously, aims to enhance the measurement efficiency and automation compared with conventional metrology systems.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are highly infiltrated in the tumor microenvironment (TME) of colorectal cancer (CRC) and play a vital role in CRC's development as well as prognosis. The required data were obtained from the Gene Expression Omnibus database and The Cancer Genome Atlas. Univariate Cox regression and least absolute shrinkage operator analyses were executed for model construction.

View Article and Find Full Text PDF

Chiral ketones and their derivatives are useful synthetic intermediates for the synthesis of biologically active natural products and medicinally relevant molecules. Nevertheless, general and broadly applicable methods for enantioenriched acyclic α,α-disubstituted ketones, especially α,α-diarylketones, remain largely underdeveloped, owing to the easy racemization. Here, we report a visible light photoactivation and phosphoric acid-catalyzed alkyne-carbonyl metathesis/transfer hydrogenation one-pot reaction using arylalkyne, benzoquinone, and Hantzsch ester for the expeditious synthesis of α,α-diarylketones with excellent yields and enantioselectivities.

View Article and Find Full Text PDF

Background: Schisandrin B (Sch. B) performs various pharmacological properties, including anticancer activities. However, the pharmacological mechanisms of Sch.

View Article and Find Full Text PDF

The unique reactivity of generated propargylic quinone methides as a new type of five-carbon synthon has been discovered by a novel bismuth(III)-catalyzed tandem annulation reaction. This 1,8-addition/cyclization/rearrangement cyclization cascade reaction is characterized by unusual structural reconstruction of 2-vinylphenol, involving cleavage of the C1'═C2' bond and formation of four new bonds. This method provides a convenient and mild approach to generate synthetically important functionalized indeno[2,1-]chromenes.

View Article and Find Full Text PDF

Skin wounds caused by diabetes are a major medical problem. Mesenchymal stem cell-derived exosomes hold promise to quicken wound healing due to their ability to transfer certain molecules to target cells, including mRNAs, microRNAs, lncRNAs, and proteins. Nonetheless, the specific mechanisms underlying this impact are not elucidated.

View Article and Find Full Text PDF

We report on the use of a thin diffuser placed in the close vicinity of a camera sensor as a simple and effective way to superlocalize plasmonic nanoparticles in 3D. This method is based on holographic reconstruction via quantitative phase and intensity measurements of a light field after its interaction with nanoparticles. We experimentally demonstrate that this thin diffuser can be used as a simple add-on to a standard bright-field microscope to allow the localization of 100 nm gold nanoparticles at video rate with nanometer precision (1.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD), is one of the most common vascular diseases caused by diabetes, eventually progressing into glomerular sclerosis. Qidantang Granule is a traditional Chinese medicine that is commonly used for DKD. However, there is still no experimental evidence for its effectiveness on DKD.

View Article and Find Full Text PDF

The rapid global growth in the production of electric vehicles (EVs) will produce numerous waste power battery modules (WPBMs) in the future, which will create significant challenges concerning waste disposal. Therefore, measures to disassemble and recycle WPBMs before using them in other fixed scenarios provide an opportunity for research. First, considering battery components' hazards and complex properties, a human-machine collaborative cell-level disassembly model of WPBMs is proposed.

View Article and Find Full Text PDF

In order to study the temporal and spatial distribution characteristics of atmospheric pollutants in cities (districts and counties) in the Chengdu-Chongqing Twin-city Economic Circle (CCEC) and to provide a theoretical basis for atmospheric pollution prevention and control, this paper combined Ambient Air Quality Standards (AAQS) and WHO Global Air Quality Guidelines (GAQG) to evaluate atmospheric pollution and used spatial correlation to determine key pollution areas. The results showed that the distribution of atmospheric pollutants in CCEC presents a certain law, which was consistent with the air pollution transmission channels. Except for particulate matter with an aerodynamic diameter equal to or less than 2.

View Article and Find Full Text PDF

Surface modification by photo grafting constitutes an interesting strategy to prepare functional surfaces. Precision applications, however, demand quantitative methods able to monitor and control the amount and distribution of surface modifications, which is hard to achieve, particularly in operando conditions. In this paper, a label-free, cost-effective, all-optical method based on wavefront sensing which is able to quantitatively track the evolution of grafted layers in real-time, is presented.

View Article and Find Full Text PDF

Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances, from quantum descriptions to chemical and biomedical diagnostics. Challenges exist in accurate spectrum analysis in free space, which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere. A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique, incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector.

View Article and Find Full Text PDF