Publications by authors named "Tengchuang Ma"

Background: In the post-pandemic era of higher education, hybrid teaching has emerged as a prevalent approach and is anticipated to persist as a defining trend in the future teaching reforms worldwide. However, despite its widespread adoption, certain limitations have become apparent. The objective of this study is to identify the genuine factors that impact students' performance, explore strategies that teachers can employ to enhance their teaching effectiveness and enhance students' academic self-efficacy.

View Article and Find Full Text PDF

Aiming at the clinical problems of high recurrence and metastasis rate of triple-negative breast cancer, a divide-and-conquer tactic is developed. The designed nanoactivators enhance microwave thermo-dynamic-chemotherapy to efficiently kill primary tumors, simultaneously ameliorate the immunosuppressive microenvironment, activate the tumor infiltration of T lymphocytes, and enhance the accumulation and penetration of PD-1/PD-L1 immune agents, ultimately boosting the efficacy of immune checkpoint blocking therapy to achieve efficient inhibition of distal tumors and metastases. Metal-organic framework (MOF)-based MPPT nano-activator is synthesized by packaging chemotherapeutic drug Pyrotinib and immunosuppressant PD-1/PD-L1 inhibitor 2 into MnCa-MOF and then coupling target molecule triphenylphosphine, which significantly improved the accumulation and penetration of Pyrotinib and immunosuppressant in tumors.

View Article and Find Full Text PDF

Cisplatin (CDDP) is a widely used chemotherapeutic drug with proven efficacy for treating tumors. However, its use has been associated with severe side effects and eventually leads to drug resistance, thus limiting its clinical application in patients with ovarian cancer (OC). Herein, we aimed to investigate the success rate of reversing cisplatin resistance using a synthetic, multitargeted nanodrug delivery system comprising a Mn-based metal-organic framework (Mn-MOF) containing niraparib (Nira) and CDDP alongside transferrin (Tf) conjugated to the surface (Tf-Mn-MOF@Nira@CDDP; MNCT).

View Article and Find Full Text PDF

Backgrounds: Microwave sensitization nanoplatform, integrating multiple functional units for improving tumor selectivity, is of great significance for clinical tumor microwave treatment. Lanthanide europium metal organic framework (EuMOF) is expected to be a theranostic nanoplatform owing to its unique luminescent and microwave sensitization properties. However, it is difficult to be applied to complicated biological systems for EuMOF due to its rapid degradation induced by the solvent molecular and ionic environment.

View Article and Find Full Text PDF

As known, radiation therapy (RT) can exacerbate the degree of hypoxia of tumor cells, which induces serious resistance to RT and in turn, is the greatest obstacle to RT. Reoxygenation can restore the hypoxic state of tumor cells, which plays an important role in reshaping tumor microenviroment for achieving optimal therapeutic efficacy. Herein, we report for the first time that microwave (MW)-triggered IL-Quercetin-CuO-SiO@ZrO-PEG nanosuperparticles (IQuCS@Zr-PEG NSPs) have been used to achieve an optimal RT therapeutic outcomes by the strategy of upregulating tumor reoxygenation, hypoxic cells acquire oxygen and return to normal state.

View Article and Find Full Text PDF

A sensitive and selective nanoprobe for detection of hypochlorite (OCl) based on 4-aminoantipyrine (AAP) modified carbon dots (CDs-AAP) has been prepared. The CDs-AAP exhibit an emission peak at 484 nm when the excitation wavelength is 370 nm, accompanying 36 nm red shift compare with the pristine CDs. The addition of OCl lead to the AAP on the surface of CDs experience a process of hydrazide hydrolysis and double bond addition, causing the singlet and triplet electrons of the excited state more closer in energy (ie, the energy difference between the two is reduced), eventually quenching the fluorescence of CDs due to heavy atomic effects.

View Article and Find Full Text PDF

The effect of aminopyridines substituted at different positions on the fluorescence properties deserves to be studied. Since 2-aminopyridyl-based probes have been reported, the effects of 3-aminopyridine and 4-aminopyridine on the performance of fluorescein probes were discussed in here. Two Schiff base fluorescein probes FN-1, FN-2 were designed and synthesized.

View Article and Find Full Text PDF

The development of multifunctional nanoscale radiosensitizers has attracted a tremendous amount of attention, which can enhance the radiosensitization of tumor tissues and reduce unnecessary damage to the surrounding organs. However, the persistent hypoxia environment within the tumor limits their applications in radiotherapy. In this paper, a stable nanocomposite was engineered to overcome the hypoxia properties by using 1,4-benzenedicarboxylic acid produced from a Zr-MOF as a carbonic anhydrase IX (CA IX) inhibitor and quercetin (QU) as a radiosensitizer.

View Article and Find Full Text PDF

Two Schiff base fluorescein probes (FDA, FDH) based on fluorescein-aldehyde and nitroaniline derivatives were synthesized. The effects of amino and hydrazine substituents in fluorescein backbones were examined via fluorescence and absorbance spectra. In the presence of Ce, the fluorescence of FDA was quenched due to the ligand to metal charge transfer (LMCT).

View Article and Find Full Text PDF

Yellow-emissive carbon dots (Y-CDs) were prepared by a solvothermal method using anhydrous citric acid and 2,3-phenazinediamine as the starting materials. The Y-CDs display a 24% fluorescence quantum yield, a 188-nm Stokes' shift and excellent stability. They are shown here to be excellent fluorescent probes for the determination of Ag(I) ion and glutathione (GSH).

View Article and Find Full Text PDF

Background: In recent years, there has been an unprecedented expansion in the field of nanomedicine with the development of new nanoparticles for the diagnosis and treatment of cancer. It is also known that the use of nanocarriers as drug delivery systems for therapeutic or imaging agents can improve the pharmacological properties of ordinarily used compounds in cancer diagnosis and treatment.

Objective: Advances in the surface regulating of nanoparticles to accommodate targeting ligands turned nanocarriers attractive candidates for future impact involving targeted drug delivery.

View Article and Find Full Text PDF

Background: Nano-oncology and interventional oncology are both rapidly emerging fields in cancer therapies. Synergistic combination of the both fields offers drastic improvements in performance and efficacy of cancer killing agents.

Objective: This review is to overview the studies focusing on these two crossing fields and to give an overlook of their future development.

View Article and Find Full Text PDF

The effect of postmastectomy radiotherapy (PMRT) on T1-2 breast cancer patients with 1-3 positive axillary lymph nodes is controversial up to now. The purpose of this study was to evaluate the impact of postmastectomy radiotherapy for these patients. The prognostic factor effecting locoregional free-survival (LRFS) was also analyzed.

View Article and Find Full Text PDF

Background: A variety of targeted drug therapies in clinical trials have been proven to be effective for the treatment of hepatocellular carcinoma (HCC). Our study aims to compare the short-term and long-term efficacies of different targeted drugs in advanced hepatocellular carcinoma (AHCC) treatment using a network meta-analysis approach.

Methods: PubMed, Embase, Ovid, EBSCO, and Cochrane central register of controlled trials were searched for randomized controlled trials (RCTs) of different targeted therapies implemented to patients with AHCC.

View Article and Find Full Text PDF

Although mesoporous silica nanoparticles (MSNs) are widely used in food products, cosmetics and nanomedicines as vector for drug delivery, data on their potential genotoxocity are limited. The aim of this study was to investigate the cytotoxic and genotoxic potentials of MSNs of different shapes, and to establish a high-throughput screening method for nanoparticles. We used functional macrophage receptor with collagenous structure (MARCO)-expressing DNA repair deficient chicken DT40 cells, which are designed to internalize nanoparticles and to be deficient in several specific DNA repair pathways.

View Article and Find Full Text PDF

Herein, we develop a novel integrated strategy for the preparation of theranostic chitosan microcapsules by encapsulating ion liquids (ILs) and Fe3O4 nanoparticles. The as-prepared chitosan/Fe3O4@IL microcapsules exhibit not only significant heating efficacy in vitro under microwave (MW) irradiation but also obvious enhancement of T2-weighted magnetic resonance (MR) imaging, besides the excellent biocompatibility in physiological environments. The chitosan/Fe3O4@IL microcapsules show ideal temperature rise and therapeutic efficiency when applied to microwave thermal therapy in vivo.

View Article and Find Full Text PDF

Residual tumor resulting in tumor recurrence after various anticancer therapies is an unmet challenge in current clinical oncology. This study aimed to investigate the hypothesis that radioiodinated hypericin (131I-Hyp) may inhibit residual tumor recurrence after microwave ablation (MWA) on rat orthotopic liver allograft sarcoma models.Thirty Sprague-Dawley (SD) rats with hepatic tumors were divided into three groups: Group A received laparotomy MWA and sequential intravenous injection (i.

View Article and Find Full Text PDF

Combining photothermal therapy (PTT) with clinical technology to kill cancer via overcoming the low tumor targeting and poor therapy efficiency has great potential in basic and clinical researches. A brand-new MoS2 nanostructure is designed and fabricated, i.e.

View Article and Find Full Text PDF

This study develops a simple hollow ZrO nanostructure as a carrier to encapsulate ionic liquid (IL), which integrates the CT imaging function of the ZrO shell and the microwave susceptibility function of the IL core. The simple nanostructure can be used as a multifunctional theranostic agent combining diagnostic and therapeutic modalities into one "package". Based on the microwave susceptibility properties, the tumor inhibiting ratio can be over 90% in mice models after one-time thermal therapy upon microwave irradiation.

View Article and Find Full Text PDF

The combination of therapies and monitoring the treatment process has become a new concept in cancer therapy. Herein, gelatin-based microcapsules have been first reported to be used as microwave (MW) susceptible agent and magnetic resonance (MR) imaging contrast agent for cancer MW thermotherapy. Using the simple coacervation methods, ionic liquid (IL) and Fe3O4 nanoparticles (NPs) were wrapped in microcapsules, and these microcapsules showed good heating efficacy in vitro under MW irradiation.

View Article and Find Full Text PDF

Background: To evaluate the relative effectiveness of different treatments of hepatocellular carcinoma (HCC) via the hepatic artery.

Materials And Methods: The study sample group consisted of 418 patients who were randomly selected from 2008 to 2012 with a first diagnosis of HCC and treated with transcatheter arterial chemoembolization (TACE) or without (TAE) chemotherapy or transcatheter arterial infusion (TAI). We collected data including tumor size preoperative and one month thereafter to compare change in areas across the three groups, along with various laboratory indexes for comparison.

View Article and Find Full Text PDF