It is widely believed that the discrete breather (DB) can only be created when the nonlinearity is strong in nonlinear systems. However, we here establish that this belief is incorrect. In this work, we systemically investigate the generation of DBs induced by coupling of the defects and nonlinearity for Bose-Einstein condensates in dissipative optical lattices.
View Article and Find Full Text PDFBackground: Distal humerus fractures are a challenge to treat, and the current standard of care, open reduction internal fixation with a double-plate, has a high rate of complications. We proposed a novel internal fixation configuration, lateral intramedullary nail and medial plate (LINMP) and verified its rigidity through biomechanical tests and finite element analysis.
Methods: The study involved biomechanical testing of 30 synthetic humerus models to compare 2 different fixation systems for an AO 13C-2.
The curing kinetics between PGN and N100 were studied by Fourier transform infrared spectroscopy and dynamic torsional vibration method. The results showed that the entire curing process of adhesives was divided into three stages. Infrared spectroscopy can only monitor the first and second stages, while dynamic torsional vibration method monitors the second and third stages.
View Article and Find Full Text PDF